Issue
Korean Journal of Chemical Engineering,
Vol.28, No.10, 2086-2093, 2011
Effect of moisture content on dense-phase conveying of pulverized coal at high pressure
In dense-phase pneumatic conveying, the solid moisture content can significantly influence the conveying process, but there are very few studies in the open literature. In this study, the conveying experiments of two pulverized coals with various moisture contents were carried out at a 4MPa high pressure and dense-phase pneumatic conveying facility. Results show that the whole conveying system can be stably and controllably operated under the condition that moisture content below ~8%. With the increase of moisture content up to ~8%, the mass flow rate of 280 μm pulverized coal increases at first and then decreases, while that of 55 μm pulverized coal decreases continuously. The method of solid friction factor correlation is used to investigate pressure drop of the horizontal pipe, and non-dimensional parameters--Fr number, moisture content M and solid loading ratio μ--are investigated. The pressure drop predictions by this correlation are in good agreement with the experimental data. The solid friction factor correlations indicate that the fine coal is more sensitive to M, and μ plays a more important role for the coarse coal.
[References]
  1. Konrad K, Powder Technol., 49, 1, 1986
  2. Shen X, Xiong Y, Proc. Chin. Soc. Electron. Eng., 25, 103, 2005
  3. Klinzing GE, Marcus RD, Rizk. Pneumatic Conveying of Solids, 2nd Ed., Chapman & Hall, London, 1997
  4. Gong X, Guo X, Dai Z, J. Chem. Ind. Eng. (China)., 57, 640, 2006
  5. Namkung W, Cho M, Korean J. Chem. Eng., 19(6), 1066, 2002
  6. Herbreteau C, Bouard R, Powder Technol., 112(3), 213, 2000
  7. Sanchez L, Vasquez NA, Klinzing GE, Dhodapkar S, Powder Technol., 153(3), 142, 2005
  8. Cai L, Xiaoping C, Changsui Z, Wenhao P, Peng L, Chunlei F, Korean J. Chem. Eng., 26(3), 867, 2009
  9. Pu WH, Zhao CS, Xiong YQ, Liang C, Chen XP, Lu P, Fan CL, Chem. Eng. Sci., 65(8), 2500, 2010
  10. Laouar S, Molodtsof Y, Powder Technol., 95(2), 165, 1998
  11. Mason DJ, Levy A, Int. J. Multiph. Flow, 27(3), 415, 2001
  12. Xiaoping C, Chunlei F, Cai L, Wenhao P, Peng L, Changsui Z, Korean J. Chem. Eng., 24(3), 499, 2007
  13. Hirota M, Sogo Y, Marutani T, Suzuki M, Powder Technol., 122(2-3), 150, 2002
  14. Geldart D, Ling SJ, Powder Technol., 62, 243, 1990
  15. Guo X, Gong X, J. Chem. Ind. Eng. (China)., 58, 602, 2007
  16. Plasynski SI, Klinzing GE, Mathur MP, Powder Technol., 79(2), 95, 1994
  17. Molerus O, Powder Technol., 88(3), 309, 1996
  18. Rautiainen A, Sarkomaa P, Powder Technol., 95(1), 25, 1998
  19. Jones MG, Williams KC, Part. Sci. Technol., 21, 45, 2003
  20. Huang WJ, Gong X, Guo XL, Dai ZH, Liu HF, Cao ZW, Wang CH, Powder Technol., 189(1), 82, 2009
  21. Liang C, PHD dissertation, Nanjing, Southeast University, 2007
  22. Xiong Y, Zhao B, Shen X, Proc. Chin. Soc. Electron. Eng., 24, 248, 2004
  23. Klinzing GE, Rohatgi ND, Zaltash A, Myler CA, Powder Technol., 51, 135, 1987