Issue
Korean Journal of Chemical Engineering,
Vol.28, No.9, 1918-1923, 2011
Establishment of a solvent map for formation of crystalline and amorphous paclitaxel by solvent evaporation process
This study intended to establish a solvent map for formation of crystalline and amorphous paclitaxel by a solvent evaporation process. Crystalline paclitaxel was produced by evaporation with polar solvents (acetone, acetonitrile, ethanol, isobutyl alcohol, methanol, methyl ethyl ketone, and n-butyl alcohol) having a polarity index above 4.00. On the other hand, amorphous paclitaxel was produced by evaporation with non-polar solvents (methylene chloride, n-butyl chloride, and toluene) having a polarity index of about 4.00 or lower. The formation of paclitaxel was very closely associated with the polarity index of the organic solvent used in the solvent evaporation process. In the case of crystalline paclitaxel, the higher the polarity index and the lower the viscosity of the organic solvent (n-butyl alcohol, methyl ethyl ketone, and acetonitrile), the higher the degree of crystallinity. In the case of amorphous paclitaxel, the shape and size of particles varied according to the solvent (methylene chloride, n-butyl chloride, and toluene) used in the solvent evaporation process.
[References]
  1. Wani MC, Taylor HL, Wall ME, Coggon P, McPhail AT, J. Am. Chem. Soc., 93, 2325, 1971
  2. Schiff PB, Fant J, Horwitz SB, Nature., 277, 665, 1979
  3. Rowinsky EK, Cazenave LA, Donehower RC, J. Natl. Cancer Inst., 82, 1247, 1990
  4. Han MG, Jeon KY, Mun S, Kim JH, Process Biochem., 45, 1368, 2010
  5. Kim JH, J. Biotechnol. Bioeng., 21, 1, 2006
  6. Jeon KY, Kim JH, Process Biochem., 44, 736, 2009
  7. Hyun JE, Kim JH, J. Biotechnol. Bioeng., 23, 281, 2008
  8. Rao KV, Hanuman JB, Alvarez C, Stoy M, Juchum J, Davies RM, Baxley R, Pharm. Res., 12, 1003, 1995
  9. Baloglu E, Kingston DG, J. Nat. Prod., 62, 1068, 1999
  10. Choi HK, Park YS, Son JS, Hong SS, Song JY, Na GH, J. Plant Biotechnol., 29, 59, 2002
  11. Hancock BC, Parks M, Pharm. Res., 17, 397, 2000
  12. Hancock BC, Zografi G, J. Pharm. Sci., 86, 1, 1997
  13. Byrn S, Pfeiffer R, Ganey M, Hoiberg C, Poochidian G, Pharm. Res., 12, 945, 1995
  14. Karunanithi AT, Acquah C, Achenie LEK, Sithambaram S, Suib SL, Comput. Chem. Eng., 33(5), 1014, 2009
  15. Pyo SH, Cho JS, Choi HJ, Han BH, Drying Technol., 25, 1759, 2007
  16. Liggins RT, Hunter WL, Burt M, J. Pharm. Sci., 86, 1458, 1997
  17. Lee JH, Gi US, Kim JH, Kim Y, Kim SH, Oh H, Min B, Bull. Korean Chem. Soc., 22, 925, 2001
  18. Gi US, Min B, Lee JH, Kim JH, Korean J. Chem. Eng., 21(4), 816, 2004
  19. Pyo SH, Park HB, Song BK, Han BH, Kim JH, Process Biochem., 39, 1985, 2004
  20. Kim WK, Chae HJ, Kim JH, Biotechnol. Bioprocess Eng., 15, 481, 2010
  21. Federal Register., ICH guidance Q3C impurities: Residual solvent, 62, 67378, 1997
  22. Ferreira V, Fernandez P, Melendez J, Cacho J, J. Chromatogr.A., 695, 41, 1995
  23. Chang FH, Lin TC, Chao HR, Chao MR, Int. J. Environ. Anal. Chem., 80, 13, 2001
  24. Pyo SH, Kim MS, Cho JS, Song BK, Han BH, Choi HJ, J. Chem. Technol. Biotechnol., 79(10), 1162, 2004
  25. Yeo SD, Kim MS, Lee JC, J. Supercrit. Fluids, 25(2), 143, 2003
  26. Park HJ, Kim MS, Lee S, Kim JS, Woo JS, Park JS, Hwang SJ, Int. J. Pharm., 328, 152, 2007
  27. Sarkar M, Perumal O, Panchagnula R, Indian J. Pharm. Sci., 70, 619, 2008
  28. Foks J, Luszczek M, J. Cryst. Growth., 134, 347, 1993
  29. Cho EB, Cho WK, Cha KH, Park JS, Int. J. Pharm., 396, 91, 2010
  30. Kim BS, Kim JH, Korean J. Chem. Eng., 26(4), 1090, 2009