Issue
Korean Journal of Chemical Engineering,
Vol.28, No.9, 1876-1881, 2011
Characteristics of sludge hydrolysis by ultrasound and thermal pretreatment at low temperature
Ultrasonic treatment and thermal treatment at low temperature were employed together to analyze and compare the effect of temperature on ultrasonic sludge hydrolysis. Waste activated sludge was more susceptible to ultrasound than anaerobic sludge and primary sludge. In ultrasonic treatment of waste activated sludge for 1 hour, ΔSCOD/ (-ΔVSS) ratio decreased from 2.40 to 0.44, indicating that high COD components were solubilized faster than the low COD components. Ultrasonic treatment increased the temperature significantly and the heat effect on sludge hydrolysis was not negligible. Primary sludge was more susceptible to heat than waste activated sludge. A sequential treatment of heat and ultrasound of primary sludge showed that hydrolysis efficiency was more affected by the ultrasonic power than the temperature and the time duration. In case of waste activated sludge, the overall hydrolysis efficiency increased with the temperature up to 50 ℃, and it remained almost constant at higher temperature. From the results the contribution of shear force by cavitation bubbles decreased at higher temperature. The effects of shear and heat in ultrasonic sludge treatment need to be analyzed separately for the optimum sludge pretreatment.
[References]
  1. Gossett JM, Belser RL, J. Env. Eng., 108, 1101, 1982
  2. Gunaseelan VN, Biomass Bioenerg., 13(1-2), 83, 1997
  3. Weemaes MPJ, Verstraete WH, J. Chem. Technol. Biotechnol., 73(2), 83, 1998
  4. Bougrier C, Albasi C, Delgenes JP, Carrere H, Chem. Eng. Process., 45(8), 711, 2006
  5. Eskicioglu C, Kennedy KJ, Droste RL, Water Res., 40, 3725, 2006
  6. Eskicioglu C, Terzian N, Kennedy KJ, Droste RL, Water Res., 41, 2457, 2007
  7. Valo A, Carrere H, Delgenes JP, J. Chem. Technol. Biotechnol., 79(11), 1197, 2004
  8. Kopp J, Muller J, Dicht N, Schwedes J, Water Sci. Technol., 36(11), 129, 1997
  9. Bougrier C, Albasi C, Delgenes JP, Carrere H, Chem. Eng. Process., 45(8), 711, 2006
  10. Baier U, Schmidheiny P, Water Sci. Technol., 36, 137, 1997
  11. Vlyssides AG, Karlis PK, Bioresour. Technol., 91(2), 201, 2004
  12. Kim SB, Park IH, Choi MJ, Lee SB, Lee KW, Korean J. Chem. Eng., 13(5), 435, 1996
  13. Ferrer I, Ponsa S, Vazquez F, Font X, Biochem. Eng. J., 42, 186, 2008
  14. Tiehm A, Nickel K, Neis U, Water Sci. Technol., 36(11), 121, 1997
  15. Chiu YC, Chang CN, Lin JG, Huang SJ, Water Sci. Technol., 36(11), 155, 1997
  16. Chu CP, Chang B, Liao GS, Jean DS, Lee DJ, Water Res., 35, 1038, 2001
  17. Chu CP, Lee DJ, Chang B, You CS, Tay JH, Water Res., 36, 2681, 2002
  18. Gronroos A, Kyllonen H, Korpijarvi K, Pirkonen P, Paavola T, Jokela J, Rintala J, Ultrason. Sonochem., 12, 115, 2005
  19. Wang F, Lu S, Ji M, Ultrason. Sonochem., 13, 334, 2006
  20. Khanal SM, Grewell D, Sung S, van Leeuwen J, Crit. Rev. Environ. Sci. Technol., 37, 277, 2007
  21. Earnshaw RG, Appleyard J, Hurst RM
  22. Vacquez GE, Putterman SJ, Phys. Rev. Lett., 85, 3037, 2000
  23. Taylor KJ, Jarman PD, J. Phys. D: Appl. Phys., 1, 653, 1968
  24. APHA, AWWA, WEF, Standard Methods for the Examination of Water and Wastewater, 21st Ed., Washington DC, 2005
  25. Lowry OH, Rosebrough NJ, Farr AL, Randall RJ, J. Biol. Chem., 193, 265, 1951
  26. Bitton G, Wastewater microbiology 3rd Ed., John Wiley & Sons, Hoboken, N.J., 2005
  27. Didenko YT, Nastich DN, Pugach SP, Polovinka YA, Kvochka VI, Ultrason., 32, 71, 1994
  28. Barber BP, Wu CC, Lofsted R, Roberts PH, Putterman SJ, Phys. Rev. Lett., 72, 1380, 1994
  29. Kirpalani DM, McQuinn KJ, Ultrason. Sonochem., 13, 1, 2006
  30. Entezari MH, Kruus P, Ultrason. Sonochem., 3, 19, 1996