Issue
Korean Journal of Chemical Engineering,
Vol.28, No.8, 1721-1726, 2011
Determination of optimal conditions for ribonucleic acid production by Candida tropicalis no. 121
The experiments were based on multivariate statistical concepts, and response surface methodology (RSM) was applied to optimize the fermentation medium for the production of ribonucleic acid (RNA) by Candida tropicalis no. 121. The process involved the individual adjustment and optimization of various medium components at shake flask level. The two-level Plackett-Burman (PB) design was used to screen the medium components, which significantly influenced RNA production. Among seven variables, the concentrations of molasses, ZnSO4, and H3PO4 were found to be the important factors that significantly affected RNA production (confidence levels above 95%). These factors were further optimized using a central composite design (CCD) and RSM. The optimum values for the critical components were as follows: molasses 47.21 g/L: ZnSO4 0.048 g/L; H3PO4 1.19 g/L. Under optimal conditions, RNA production was 2.56 g/L, which was in excellent agreement with the predicted value (2.561 g/L), and led to a 2.1-fold increase compare with that using the original medium in RNA production.
[References]
  1. Slobodianik NH, Nutrition., 19, 68, 2003
  2. Kulshrestha Y, Husain Q, Enzym. Microbial. Technol., 88, 470, 2006
  3. Carver JD, Pimentel B, William I, Pediatrics., 88, 359, 1991
  4. Masor and J. Lee, US Patent 5,700,590, 1997
  5. Herrick JLM, Shecterle JAS, Med. Hypoth., 72, 499, 2009
  6. Qiu LP, Zhao GL, Wu H, Jiang L, Li XF, Liu JJ, Carbohyd.Polym., 80, 326, 2010
  7. Xiao ZJ, Liu PH, Qin JY, Xu P, Appl. Microbiol. Biotechnol., 74(1), 61, 2007
  8. Ying HJ, Chen XC, Cao HP, Xiong J, Hong Y, Bai JX, Li ZJ, Appl. Microbiol. Biotechnol., 84(4), 677, 2009
  9. Kar S, Datta TK, Ray RC, Braz. Arch. Biol. Technol., 53, 301, 2010
  10. Granato D, Castro DIA, Neves ELS, ML, J. Food Sci., 75, 149, 2010
  11. Qu YY, Pi WQ, Ma F, Zhou JT, Zhang XW, Bioresour.Technol., 101, 4527, 2010
  12. Kuenzi MT, Biotechnol. Lett., 3, 127, 1979
  13. Li X, Ouyang J, Xu Y, Chen M, Song XY, Yong Q, Yu SY, Bioresour. Technol., 100, 3613, 2009
  14. Kennedy M, Krouse D, J. Ind. Microbiol. Biotechnol., 6, 456, 1999
  15. Plackett RL, Burman JP, Biometrika., 33, 305, 1946
  16. Chen XC, Bai JX, Cao JM, Li ZJ, Xiong J, Zhang L, Hong Y, Ying HJ, Bioresour. Technol., 100, 919, 2009
  17. Liu YP, Zheng P, Sun ZH, Ni Y, Dong JJ, Zhu LL, Bioresour. Technol., 99(6), 1736, 2008
  18. Ye Q, Li XM, Yan M, Cao H, Xu L, Zhang YY, Chen Y, Xiong J, Ouyang PK, Ying HJ, Appl. Microbiol. Biotechnol., 87(2), 517, 2010
  19. Jain R, Saxena J, Sharma V, Appl. Soil Ecol., 46, 90, 2010
  20. Wang X, Wang XW, Yin MX, Xiao ZJ, Ma CQ, Lin ZX, Wang PG, Xu P, Appl. Microbiol. Biotechnol., 76(2), 321, 2007
  21. Kery V, Kogan G, Zajacova K, Masler L, Alfoldi J, Enzym. Microb. Technol., 13, 87, 1991
  22. O'Brien KM, Dirmeier R, Engle M, J. Biol. Chem., 279, 51817, 2004
  23. Shivam K, Tripathi CPM, Mishra SK, Electron. J. Biotechnol., 2009
  24. Siva V, Mansoor AK, Int. J. Pharmaceut., 234, 179, 2002
  25. Cui FJ, Liu ZQ, Li Y, Ping LF, Ping LY, Zhang ZC, Lin L, Dong Y, Huang DM, Biotechnol. Bioprocess. Eng., 15, 299, 2010