Issue
Korean Journal of Chemical Engineering,
Vol.28, No.7, 1599-1607, 2011
Hydrodynamic modeling of the entrainment of Geldart A group particles in gas-solid fluidized bed: The effect of column diameter
A multi-fluid Eulerian computational fluid dynamics (CFD) model is used to simulate the entrainment of fluid catalytic cracking (FCC) particles in gas-solid fluidized beds. Entrainment of Geldart A group particles was studied because of their wide range of industrial use. The model was based on the kinetic theory of granular flow. The CFD model was used to investigate the effect of column diameter on the entrainment flux of particles in a binary mixture. Two different sizes of particles were used because many engineering applications deal with binary mixture of particles in fluidized beds. Various column diameters, including 38 mm, 76 mm, 114 mm, 152 mm, and 190 mm, were investigated. The entrainment flux of particles was increased with decreasing column diameter. The effect of column diameter was not significant for column diameters larger than 114 mm. Furthermore, increasing the superficial gas velocity increased the entrainment flux of particles. Model predictions were also compared with experimental findings.
[References]
  1. Chung JD, Kim JW, Park YM, Korean J. Chem. Eng., 27(1), 83, 2010
  2. Fan L, Hai R, Lu Z, Korean J. Chem. Eng., 26(5), 1272, 2009
  3. Azadi M, Azadi M, Mohebbi A, J. Hazard. Mater., 182(1-3), 835, 2010
  4. Gidaspow D, Multiphase flow and fluidization: Continuum and kinetic theory descriptions., Academic Press, Boston, 1994
  5. Sinclair JL, Hydrodynamic modelling, In: Grace JR, Avidan AA, Knowlton TM. (Eds.), Circulating Fluidized Beds, Blackie, London (Chapter 5), 1997
  6. van Wachem BGM, Almstedt AE, Chem. Eng. J., 96(1-3), 81, 2003
  7. Crowe C, Sommerfield M, Tsuji Y, Multiphase flows with droplets and particles, CRC Press, London, 1998
  8. Fluent user manual, Fluent Inc., 2006
  9. Pain CC, Mansoorzadeh S, de Oliveira CRE, Int. J. Multiph. Flow, 27(3), 527, 2001
  10. Kuipers JAM, van Duin KJ, van Beckum FPH, Van Swaaij WPM, Chem. Eng. Sci., 47, 1913, 1992
  11. Mathiesen V, Solberg T, Hjertager BH, Int. J. Multiph. Flow, 26(3), 387, 2000
  12. Benyahia S, Arastoopour H, Knowlton TM, Chem. Eng. Commun., 189(4), 510, 2001
  13. Gera D, Gautam M, Tsuji Y, Kawaguchi T, Tanaka T, Powder Technol., 98(1), 38, 1998
  14. Almuttahar A, Taghipour F, Chem. Eng. Sci., 63(6), 1696, 2008
  15. Lu HL, He YR, Gidaspow D, Chem. Eng. Sci., 58(7), 1197, 2003
  16. Jenkins JT, Savage SB, J. Fluid Mech., 130, 187, 1983
  17. Lun CKK, Savage SB, Jeffrey DJ, Chepumiy N, J. Fluid Mech., 140, 223, 1984
  18. Richman MW, J. Rheol., 33, 1293, 1989
  19. Koch DL, Phys. Fluids., A2, 1711, 1990
  20. Montanero JM, Garzo V, Santos A, Brey JJ, J. Fluid Mech., 389, 391, 1999
  21. Chapman S, Cowling T, The mathematical theory on non-uniform gases, Cambridge University Press, Cambridge, 1970
  22. Johnson P, Jackson R, J. Fluid Mech., 176, 67, 1987
  23. Sinclair J, Jackson R, AIChE J., 35, 1473, 1989
  24. Tasirin SM, Geldart D, Powder Technol., 95(3), 240, 1998
  25. Syamlal M, O’Brien TJ, Computer simulation of bubbles in a fluidized bed, AIChE Symp. Ser., 85, 22, 1989
  26. Schaeffer DG, J. Diff. Eq., 66, 19, 1987
  27. Dalla Valle JM, Micromeritics, Pitman, London, 1948
  28. Syamlal M, The particle-particle drag term in a multiparticle model of fluidization, National Technical Information Service, Springfield, VA, 1987
  29. Ding J, Gidaspow D, AIChE J., 36, 523, 1990
  30. Syamlal M, Rogers W, O’Brien TJ, MFIX Documentation: Volume 1, Theory Guide. National Technical Information Service, Springfield, VA, DOE/METC-9411004, NTIS/DE9400087, 1993
  31. Gidaspow D, Bezburuah R, Ding J, Hydrodynamics of Circulating Fluidized Beds, Kinetic Theory Approach, In Fluidization VII, Proceedings of the 7th Engineering Foundation Conference on Fluidization, 75, 1992
  32. Vasquez SA, Ivanov VA, A Phase Coupled Method for Solving Multiphase Problems on Unstructured Meshes, In Proceedings of ASME FEDSM’00: ASME 2000 Fluids Engineering Division Summer Meeting, Boston, June, 2000
  33. Patankar S, Numerical heat transfer and fluid flow, Hemisphere, Washington, D.C., 1980
  34. Lewis WK, Gilliland ER, Lang PM, Entrainment from fluidized beds, Chem. Eng. Prog. Symp. Ser., 58, 65, 1962
  35. Colakyan M, Levenspiel O, Powder Technol., 38, 223, 1984
  36. Wohlfarth W, in D. Geldart (Ed.), Gas Fluidization Technology, Wiley, Chichester, UK, 141, 1986
  37. Kato K, Kanbara S, Tajima T, Shibasaki H, Ozawa K, Takarada T, J. Chem. Eng. Jpn., 20, 498, 1987
  38. Nakagawa N, Arita S, Uchida H, Takamura N, Takarada T, Kato K, J. Chem. Eng. Jpn., 27, 79, 1996