Issue
Korean Journal of Chemical Engineering,
Vol.28, No.7, 1561-1565, 2011
Effect of water content of organic solvent on microwave-assisted extraction efficiency of paclitaxel from plant cell culture
A microwave-assisted extraction (MAE) method was used to recover the anticancer agent paclitaxel from plant cell cultures, and the extraction efficiency of the paclitaxel was determined using various organic solvents (acetone, chloroform, ethanol, methanol, and methylene chloride) and solvent concentrations. Methanol provided the highest recovery of paclitaxel (~93%) and resulted in the most severe rupturing of the biomass surface during MAE. Most of the paclitaxel (>99%) was recovered using a methanol concentration of 90% (water content: 10%), suggesting that the addition of a small amount of water improves the efficiency of MAE. Furthermore, analysis of the surface of the biomass using an electron microscope revealed that the higher the recovery of paclitaxel, the more severe the damage to the biomass surface. A comparison of the extraction efficiency between MAE and conventional solvent extraction (CSE) showed that with CSE, only up to 54% of the paclitaxel could be recovered in one extraction whereas with MAE, most of the paclitaxel (>99%) in the biomass could be recovered in one extraction.
[References]
  1. Wani MC, Taylor HL, Wall ME, Coggon P, McPhail AT, J. Am. Chem. Soc., 93, 2325, 1971
  2. Schiff PB, Fant J, Horwitz SB, Nature., 277, 665, 1979
  3. Rowinsky EK, Cazenave LA, Donehower RC, J. Natl. Cancer Inst., 82, 1247, 1990
  4. Kim JH, Korean J. Biotechnol. Bioeng., 21, 1, 2006
  5. Jeon KY, Kim JH, Korean J. Biotechnol. Bioeng., 23, 557, 2008
  6. Hyun JE, Kim JH, Korean J. Biotechnol. Bioeng., 23, 281, 2008
  7. Rao KV, Hanuman JB, Alvarez C, Stoy M, Juchum J, Davies RM, Baxley R, Pharm. Res., 12, 1003, 1995
  8. Baloglu E, Kingston DG, J. Nat. Prod., 62, 1068, 1999
  9. Choi HK, Park YS, Son JS, Hong SS, Song JY, Na GH, Kor. J. Plant Biotechnol., 29, 59, 2002
  10. Kim JH, Lim CB, Kang IS, Hong SS, Lee HS, Korean J. Biotechnol. Bioeng., 15, 337, 2000
  11. Kim JH, Hong SS, Korean J. Biotechnol. Bioeng., 15, 346, 2000
  12. Kim JH, Kang IS, Choi HK, Hong SS, Lee HS, Process Biochem., 37, 679, 2002
  13. Pyo SH, Park HB, Song BK, Han BH, Kim JH, Process Biochem., 39, 1985, 2004
  14. Zhang B, Yang RY, Liu CZ, Sep. Purif. Technol., 62(2), 480, 2008
  15. Kim WK, Chae HJ, Kim JH, Biotechnol. Bioprocess. Eng., 15, 481, 2010
  16. Kwon JH, Choi YH, Chung HW, Lee GD, Int. J. Food Sci. Technol., 41, 67, 2005
  17. Fulzele DP, Satdive RK, J. Chromatogr. A., 1063, 9, 2005
  18. Lucchesi ME, Smadja J, Bradshaw S, Louw W, Chemat F, J. Food Eng., 79, 1079, 2007
  19. Youn YS, Ming YK, Yuan SC, Microchem. J., 74, 131, 2003
  20. Pan X, Liu H, Jia G, Youn YS, Biochem. Eng. J., 5, 173, 2000
  21. Pan XJ, Niu GG, Liu HZ, Chem. Eng. Process., 42(2), 129, 2003
  22. Choi HK, Adams TL, Stahlhut RW, Kim SI, Yun JH, Song BK, Kim JH, Hong SS, Lee HS, US Patent 5,871,979, 1999
  23. Hemwimon S, Pavasant P, Shotipruk A, Sep. Purif. Technol., 54(1), 44, 2007
  24. Zlotorzynski A, Crit. Rev. Anal. Chem., 25, 43, 1995
  25. Hao JY, Han W, Huang SD, Xue BY, Deng X, Sep. Purif. Technol., 28(3), 191, 2002
  26. Hong SS, Song BK, Kim JH, Lim CB, Lee HS, Kim KW, Kang IS, Park HB, US Patent, 5,900,979, 1999
  27. Xiao WH, Han LJ, Shi B, Sep. Purif. Technol., 62(3), 614, 2008
  28. Zhou HY, Liu CZ, J. Chromatogr. A., 1129, 135, 2006