Issue
Korean Journal of Chemical Engineering,
Vol.28, No.7, 1518-1522, 2011
Direct synthesis of dimethyl carbonate from methanol and carbon dioxide over H3PW12O40/CeXZr1.XO2 catalysts: Effect of acidity of the catalysts
CeXZr1-XO2 catalysts were prepared by a sol-gel method, and H3PW12O40/CeXZr1-XO2 catalysts were then prepared by an impregnation method. Both catalysts were applied to the direct synthesis of dimethyl carbonate from methanol and carbon dioxide in a batch reactor. NH3-TPD experiments were carried out to investigate the effect of acidity on the catalytic performance of CeXZr1-XO2 and H3PW12O40/CeXZr1-XO2. Catalytic performance of CeXZr1-XO2 and H3PW12O40/CeXZr1-XO2 was closely related to the acidity of the catalysts. The amount of dimethyl carbonate produced over both CeXZr1-XO2 and H3PW12O40/CeXZr1-XO2 catalysts increased with increasing acidity of the catalysts. This indicates that acidity of the catalyst played a key role in determining the catalytic performance of CeXZr1-XO2 and H3PW12O40/ CeXZr1-XO2 in the direct synthesis of dimethyl carbonate from methanol and carbon dioxide. Catalytic activity of H3PW12O40/CeXZr1-XO2 was higher than that of the corresponding CeXZr1-XO2. The enhanced catalytic performance of H3PW12O40/CeXZr1-XO2 was attributed to the Brønsted acid sites provided by H3PW12O40-.
[References]
  1. Keller N, Rebmann G, Keller V, J. Mol. Catal. A-Chem., 317(1-2), 1, 2010
  2. Delledonne D, Rivetti F, Romano U, Appl. Catal. A: Gen., 221(1-2), 241, 2001
  3. Babad H, Zeiler AG, Chem. Rev., 73, 75, 1973
  4. King ST, Catal. Today, 33(1-3), 173, 1997
  5. Matsuzaki T, Nakamura A, Catal. Surv. Jpn., 1, 77, 1997
  6. Tomishige K, Sakaihori T, Ikeda Y, Fujimoto K, Catal. Lett., 58(4), 225, 1999
  7. Kizlink J, Collect. Czech. Chem. Commun., 58, 1399, 1993
  8. Sakakura T, Choi JC, Saito Y, Sako T, Polyhedron., 19, 573, 2000
  9. Kizlink J, Pastucha I, Collect. Czech. Chem. Commun., 60, 687, 1995
  10. Fang SN, Fujimoto K, Appl. Catal. A: Gen., 142(1), L1, 1996
  11. Zhao TS, Han YZ, Sun YH, Fuel Process. Technol., 62(2-3), 187, 2000
  12. Jung KT, Bell AT, J. Catal., 204(2), 339, 2001
  13. Tomishige K, Furusawa Y, Ikeda Y, Asadullah M, Fujimoto K, Catal. Lett., 76(1-2), 71, 2001
  14. Tomishige K, Kunimori K, Appl. Catal. A: Gen., 237(1-2), 103, 2002
  15. Jiang CJ, Guo YH, Wang CG, Hu CW, Wu Y, Wang EB, Appl. Catal. A: Gen., 256(1-2), 203, 2003
  16. La KW, Youn MH, Chung JS, Baeck SH, Song IK, Solid State Phenom., 119, 287, 2007
  17. Youn MH, Park DR, Jung JC, Kim H, Barteau MA, Song IK, Korean J. Chem. Eng., 24(1), 51, 2007
  18. Song IK, Barteau MA, Korean J. Chem. Eng., 19(4), 567, 2002
  19. Dhage SR, Gaikwad SP, Muthukumar P, Mater. Lett., 58, 2704, 2004
  20. Seo JG, Youn MH, Cho KM, Park S, Lee SH, Lee J, Song IK, Korean J. Chem. Eng., 25(1), 41, 2008
  21. Rao GR, Rajkumar T, J. Colloid Interface Sci., 324(1-2), 134, 2008
  22. Kaspar J, Fornasiero P, Balducci G, Monte RD, Hickey N, Sergo V, Inorg. Chim. Acta., 349, 217, 2003
  23. Postole G, Chowdhury B, Karmakar B, Pinki K, Banerji J, Auroux A, J. Catal., 269(1), 110, 2010
  24. Sulikowski B, Rachwalik R, Appl. Catal. A: Gen., 256(1-2), 173, 2003
  25. He NY, Woo CS, Kim HG, Lee HI, Appl. Catal. A: Gen., 281(1-2), 167, 2005
  26. Izumi Y, Hasebe R, Urabe K, J. Catal., 84, 402, 1983
  27. Kozhevnikov IV, Kloetstra KR, Sinnema A, Zandbergen HW, Bekkum HV, J. Mol. Catal. A., 114, 287, 1996
  28. Mallik S, Parida KM, Dash SS, J. Mol. Catal. A-Chem., 261(2), 172, 2007
  29. Tomishige K, Ikeda Y, Sakaihori T, Fujimoto K, J. Catal., 192(2), 355, 2000
  30. Ikeda Y, Asadullah M, Fujimoto K, Tomishige K, J. Phys. Chem. B, 105(43), 10653, 2001
  31. Almusaiteer K, Catal. Commun., 10, 1127, 2009