Issue
Korean Journal of Chemical Engineering,
Vol.28, No.9, 1936-1944, 2011
Highly improved adsorption selectivity of L-phenylalanine imprinted polymeric submicron/nanoscale beads prepared by modified suspension polymerization
Molecularly imprinted polymer (MIP) submicron/nanoscale beads selective for L-Phenylalanine (L-Phe) and D-Phe as well as non-imprinted beads were prepared by modified suspension polymerization involving agitation of the reaction mixture at high rotation speed under safe radical conditions. The effects of pH, template and concentration of racemate solution on the performance of the phenylalanine (Phe) imprinted polymeric submicron/nanoscale beads were studied. L-Phe-imprinted submicron/nanoscale beads prepared for the first time by modified suspension polymerization showed enhanced adsorption capacity and selectivity over those of D-Phe imprinted and non-imprinted beads. Maximum adsorption capacity, 0.35 mg/g, and selectivity, 1.62, of L-Phe imprinted submicron/nanoscale beads were higher than the adsorption capacities, 0.30 and 0.19 mg/g, and selectivities, 1.59 and 1.02, of D-Phe imprinted and nonimprinted submicron/nanoscale beads, respectively. FE-SEM analyses revealed that L- and D-Phe imprinted beads were larger (100 nm-1.5 μm) than non-imprinted nanobeads (100-800 nm). 13C CP-MAS NMR spectroscopy helped in correlating the bead sizes and the extent of reaction during polymerization. Similarly, FT-IR study was used for evaluation of structural characteristics of the prepared Phe-imprinted and non-imprinted beads. The preparation of Phe-imprinted submicron/nanoscale beads with improved adsorption and separation properties and the study of effect of template on the size and performance of the prepared beads are suitable from both economical and research point of view in MIP field.
[References]
  1. Komiyama M, Takeuchi T, Mukawa T, Asanuma H, Molecular imprinting from fundamentals to applications, ®WILEY-VCH GmbH and Co. KGAa Weinheim, ISBN 3-527-30569-6, 2003
  2. Park JK, Khan H, Lee W, Enzyme Microb. Technol., 35(6-7), 688, 2004
  3. Khan H, Khan T, Park JK, Sep. Purif. Technol., 62(2), 363, 2008
  4. Yang HH, Zhang SQ, Tan F, Zhuang ZX, Wang XR, J. Am. Chem. Soc., 127(5), 1378, 2005
  5. Park JK, Kim SJ, Lee JW, Korean J. Chem. Eng., 20(6), 1066, 2003
  6. Fan P, Wang B, Korean J. Chem. Eng., 26(6), 1813, 2009
  7. Jin Y, Choi DK, Row KH, Korean J. Chem. Eng., 25(4), 816, 2008
  8. Surugiu I, Danielsson B, Ye L, Mosbach K, Haupt K, Anal. Chem., 73, 487, 2001
  9. Li Y, Yin XF, Chen FR, Yang HH, Zhuang ZX, Wang XR, Macromolecules, 39(13), 4497, 2006
  10. Markowitz MA, Kust PR, Deng G, Schoen PE, Dordick JS, Clark DS, Gaber BP, Langmuir, 16(4), 1759, 2000
  11. Gao DM, Zhang ZP, Wu MH, Xie CG, Guan GJ, Wang DP, J. Am. Chem. Soc., 129(25), 7859, 2007
  12. Xie C, Liu B, Wang Z, Gao D, Guan G, Zhang Z, Anal. Chem., 80, 437, 2008
  13. Pham VH, Lee YH, Lee DJ, Chung JS, Korean J. Chem. Eng., 26(6), 1585, 2009
  14. Bompart M, Haupt K, Aust. J. Chem., 62, 751, 2009
  15. Vandevelde F, Belmont AS, Pantigny J, Haupt K, Adv. Mater., 19(21), 3717, 2007
  16. Khan H, Park JK, Biotechnol. Bioprocess Eng., 11, 503, 2006
  17. Yoshimatsu, Reimhult K, Krozer A, Mosbach K, Sode K, Ye L, Anal. Chim. Acta., 584, 112, 2007
  18. Capote FP, Ye L, Shakil S, Shamsi SA, Nilsson S, Anal. Chem., 80, 2881, 2008
  19. Lee JS, Park JK, Korean J. Chem. Eng., 26(2), 453, 2009
  20. Ellwanger A, Berggren C, Bayoudh S, Crecenzi C, Karlsson L, Owens PK, Ensing K, Cormack P, Sherrington D, Sellergren B, Analyst., 126, 784, 2001
  21. Wu PJ, Yang J, Su QD, Gao Y, Zhu XL, Cai JB, Chin. J. Anal. Chem., 35, 484, 2007
  22. Schweitz L, Spegel P, Nilsson S, Electrophoresis, 22(19), 4053, 2001
  23. Gallegos MG, Olivas RM, Camara C, J. Environ. Manage., 90, S69, 2009
  24. Spegel P, Schweitz L, Nilsson S, Electrophoresis, 22(17), 3833, 2001
  25. Park JK, Lee JW, Korean J. Chem. Eng., 22(6), 927, 2005
  26. Shelke CR, Kawtikwar PS, Sakarkar DM, Kulkarni NP, Latest Reviews., 6, 2008
  27. Socrates G, Infrared characteristic group frequencies, second edition, John Wiley & Sons Ltd., ISBN 0471942308, 1994
  28. Vaihinger D, Lndfester K, Krauter I, Brunner H, Tovar GEM, Macromolecular Chem. Phys., 203, 1965, 2002
  29. Earnshaw RG, Price CA, J. Appl. Polym. Sci., 32, 5337, 1986
  30. Mayes AG, Mosbach K, Anal. Chem., 68, 3769, 1996
  31. Jantarat C, Tangthong N, Songkro S, Martin GP, Suedee R, Int. J. Pharm., 349, 212, 2008
  32. Vidyasankar S, Ru M, Arnold FH, J. Chromatogr. A., 775, 51, 1997
  33. Liao Y, Wang W, Wang B, Bioorganic Chem., 26, 309, 1998
  34. Boopathi M, Suryanarayana MVS, Nigam AK, Pandey P, Ganesan K, Singh B, Sekhar K, Biosens. Bioelectron., 21, 2339, 2006
  35. Lin JM, Nakagama T, Uchiyama K, Hobo T, Chromatographia., 43, 585, 1996
  36. Zhang L, Cheng G, Fu C, React. Funct. Polym., 56, 167, 2003
  37. Chen Y, Kele M, Quinones I, Sellergren B, Guiochon G, J. Chromatogr. A., 927, 1, 2001
  38. Ul-Haq N, Khan T, Park JK, J. Chem. Technol. Biotechnol., 83(4), 524, 2008