Issue
Korean Journal of Chemical Engineering,
Vol.28, No.8, 1785-1790, 2011
Effects of water vapor, CO2 and SO2 on the NO reduction by NH3 over sulfated CaO
Gas effects on NO reduction by NH3 over sulfated CaO have been investigated in the presence of O2 at 700-850 ℃. CO2 and SO2 have reversible negative effects on the catalytic activity of sulfated CaO. Although H2O alone has no obvious effect, it can depress the negative effects of CO2 and SO2- In the flue gas with CO2, SO2 and H2O coexisting, the sulfated CaO still catalyzed the NO reduction by NH3- The in situ DRTFTS of H2O adsorption over sulfated CaO indicated that H2O generated Brønsted acid sites at high temperature, suggesting that CO2 and SO2 competed for only the molecularly adsorbed NH3 over Lewis acid sites with NO, without influencing the ammonia ions adsorbed over Brønsted acid sites. Lewis acid sites shifting to Brønsted acid sites by H2O adsorption at high temperature may explain the depression of the negative effect on NO reduction by CO2 and SO2-.
[References]
  1. Li TJ, Zhuo YQ, Zhao YF, Chen CH, Xu XC, Energy Fuels., 23, 2010, 2009
  2. Yang XF, Zhao B, Zhuo YQ, Chen CH, Xu XC, Asia-Pac. J. Chem. Eng., DOI:10.1002/apj.491, 2010
  3. Li T, Zhuo Y, Lei J, Xu X, Korean J. Chem. Eng., 24(6), 1113, 2007
  4. Zhang J, Zhao SW, You CF, Qi HY, Chen CH, Ind. Eng. Chem. Res., 46(16), 5340, 2007
  5. Lee YY, Soares SMS, Sekthira A, In Proceedings of the 9th International Conference on Fluidized-Bed Combustion, New York, 1987
  6. Amiridis MD, Wachs IE, Deo G, Jehng JM, Kim DS, J. Catal., 161(1), 247, 1996
  7. Stoll M, Furrer J, Seifert H, Schaub G, Unruh D, Waste Manage., 21, 457, 2001
  8. Toops TJ, Walters AB, Vannice MA, Appl. Catal. B: Environ., 38(3), 183, 2002
  9. Michael BC, Donazzi A, Schmidt LD, J. Catal., 265(1), 117, 2009
  10. Xu W, Tong H, Chen C, Xu X, Korean J. Chem. Eng., 25(1), 53, 2008
  11. Shimizu T, Tachiyama Y, Fujita D, Kumazawa K, Energy Fuels., 6, 753, 1992
  12. Zijlma GJ, Jensen AD, Johnsson JE, van den Bleek CM, Fuel., 81, 1871, 2002
  13. Li TJ, Zhuo YQ, Chen CH, Xu XC, Asia-Pac. J. Chem. Eng., 5, 287, 2010
  14. Zijlma GJ, Jensen A, Johnsson JE, van den Bleek CM, Fuel., 79, 1449, 2000
  15. Shimizu T, Hasegawa M, Inagaki M, Energy Fuels, 14(1), 104, 2000
  16. Li TJ, Zhuo YQ, Chen CH, Xu XC, J. Eng. Thermophys., 30, 1233, 2009
  17. Zijlma GJ, Jensen AD, Johnsson JE, van den Bleek CM, Fuel., 83, 237, 2004
  18. Li TJ, Zhuo YQ, Chen CH, Xu XC, In Proceedings of the 33rd International Technical Conference on Coal Utilization & Fuel Systems, Clearwater, Florida, 2008
  19. Ramachandran B, Herman RG, Choi S, Stenger HG, Lyman CE, Sale JW, Catal. Today, 55(3), 281, 2000
  20. Su WY, Chen YL, Fu XZ, Wei KM, Chin. J. Catal., 22, 175, 2001
  21. Cristiani C, Forzatti P, Busca G, J. Catal., 116, 586, 1989
  22. Ramis G, Cristiani C, Forzatti P, Busca G, J. Catal., 124, 574, 1990
  23. Deo G, Wachs IE, J. Catal., 146(2), 323, 1994
  24. LI TJ, Zhuo YQ, Chen CH, Xu XC, J. Tsinghua Univ. (Sci.Tech.)., 48, 1795, 2008
  25. Lin CH, Bai H, Ind. Eng. Chem. Res., 43(19), 5983, 2004
  26. Nakanshi K, Solomon PH, Infrared absorption spectroscopy, 2nd Edition, Holden-Day, San Francisco, 1977
  27. Lietti L, Alemany JL, Forzatti P, Busca G, Ramis G, Giamello E, Bregani F, Catal. Today, 29(1-4), 143, 1996
  28. Marban G, Valdes-Solis T, Fuertes AB, J. Catal., 226(1), 138, 2004
  29. Busca G, Lietti L, Ramis G, Berti F, Appl. Catal. B: Environ., 18(1-2), 1, 1998
  30. Yang XF, Zhao B, Zhuo YQ, Gao Y, Chen CH, Xu XC, Environ. Sci. Technol., DOI: 10.1021/es103075p, 2010
  31. Chen JP, Yang RT, J. Catal., 125, 411, 1990
  32. Ramis G, Busca G, Bregani F, Forzatti P, Appl. Catal., 64, 259, 1990
  33. Ramis G, Busca G, Lorenzelli V, Forzatti P, Appl. Catal., 64, 243, 1990
  34. Lin CH, Bai H, Appl. Catal. B: Environ., 42(3), 279, 2003