Issue
Korean Journal of Chemical Engineering,
Vol.14, No.5, 334-340, 1997
Extraction of Proteins and Polymers Using Reverse Micelles and Percolation Process
Specific interfacial properties, which affect protein extraction in AOT and AOT-lecithin reverse micellar systems(RVMS), have been studied by using their percolation processes. Solubilization of proteins or synthetic polymers into RVMS by the injection method and its effect on the percolation processes could be easily evaluated by the measurement of electrical conductivity. The percolation process is found to be a sensitive and convenient measure of micro-interface of RVMS solubilizing various polymers or proteins, which clearly reflects the polymer(protein)-micellar and micellar-micellar interactions. The stability of RVMS or micellar-micellar interaction was dependent on the kinds, concentration and molecular weight of solubilized polymers. The value of β, defined as the variation of percolation threshold with the concentration of solubilized polymers, can be utilized to evaluate the stability of RVMS solubilizing polymers or micellar-micellar interactions. The values of β are affected by the hydrophobicity, molecular weight and absolute value of the net charge of the polymers solubilized into the AOT reverse micelles, which were evaluated by using Aqueous Two-Phase Systems (ATPS).
[References]
  1. Albertsson PA, "Partition of Cell Particles and Macromolecules," 3rd Ed. Wiley, New York, 1986
  2. Alexandridis P, Holzwarth JF, Hatton TA, J. Phys. Chem., 99(20), 8222, 1995
  3. Cassin G, Illy S, Pileni MP, Chem. Phys. Lett., 221, 205, 1994
  4. Holovko M, Badiadi JP, Chem. Phys. Lett., 204, 511, 1993
  5. Huruguen JP, Authier M, Greffe JL, Pileni MP, Langmuir, 7, 243, 1991
  6. Jada A, Lang J, Zana R, J. Phys. Chem., 93, 10, 1989
  7. Jada A, Lang J, Zana R, J. Phys. Chem., 94, 387, 1990
  8. Johansson G, Joelsson M, Biotechnol. Bioeng., 27, 621, 1984
  9. Johansson G, Methods Enzymology, 228, 234, 1994
  10. Kelly B, Wang DC, Hatton TA, Biotechnol. Bioeng., 42, 1199, 1993
  11. Kuboi R, Hong DP, Komasawa I, Shiomori K, Kawano Y, Lee SS, Solv. Extr. Res. Dev. Jpn., 3, 223, 1996
  12. Kuboi R, Tanaka H, Komasawa I, Kag. Kog. Ronbunshu, 16, 1053, 1990
  13. Kuboi R, Tanaka H, Komasawa I, Kag. Kog. Ronbunshu, 16, 446, 1990
  14. Kuboi R, Yamada Y, Mori Y, Komasawa I, Kag. Kog. Ronbunshu, 17, 607, 1991
  15. Larsson KM, Pileni MP, Eur. Biphys. J., 21, 409, 1993
  16. Luisi PL, giomini M, Pileni MP, Robinson BH, Biochim. Biophys. Acta, 947, 209, 1988
  17. Oberholzer T, Albrizio M, Luisi PL, Chem. Biology, 2, 677, 1995
  18. Shiomori K, Kawano Y, Kuboi R, Komasawa I, J. Chem. Eng. Jpn., 27(3), 410, 1994
  19. Singleton WS, Gray MS Brown ML, White JL, J. Am. Oil Chem. Soc., 42, 53, 1965
  20. Suarez MJ, Levy H, Lang J, J. Phys. Chem., 97, 9808, 1993
  21. Tanaka H, Kuboi R, Komasawa I, J. Chem. Eng. Jpn., 24, 661, 1991