Issue
Korean Journal of Chemical Engineering,
Vol.14, No.2, 129-135, 1997
EVALUATION OF NUCLEATION ACTIVATION ENERGY IN METAL CVD PROCESSES
A new approach to evaluate activation energy for nucleation in metal chemical vapor deposition (CVD) is presented. Deposition is performed by laser induced chemical vapor deposition (LCVD) using a low laser power and a high scan speed, so that only discrete particles in the initial nucleation stage are formed. The nucleation activation energy is then obtained from a relationship between the laser-induced surface temperature distribution and the particle distribution. The activation energy is directly related ot the nucleation barrier, and hence the difference in the nucleation activation energies on different substrates may be used to explain the chemical selectivity which is often observed during metal CVD processes. This approach is experimentally applied to aluminum CVD using dimethylethylamine alane (DMEAA) precursor, and its nucleation activation energy is found to be 25kcal/mol on silicon surface.
[References]
  1. Baum TH, Larson CE, Jackson RL, Appl. Phys. Lett., 55, 1264, 1989
  2. Dubois LH, Zegarski BR, Kao CT, Nuzzo RZ, Surf. Sci., 236, 77, 1990
  3. Foulon F, Stuke M, Appl. Phys. A-Mater. Sci. Process., 56, 283, 1993
  4. Gross ME, Harriott LR, Opila RL, J. Appl. Phys., 68, 4820, 1990
  5. Han J, Jensen KF, Appl. Phys. Lett., 64, 425, 1994
  6. Higashi GS, Appl. Surf. Sci., 43, 6, 1989
  7. Kim DH, Lee IJ, Rhee SW, Moon SH, Korean J. Chem. Eng., 12(5), 572, 1995
  8. Lax M, Appl. Phys. Lett., 33, 786, 1978
  9. Lee JH, Moon SH, Rhee SW, Korean J. Chem. Eng., 9(1), 29, 1992
  10. Lee KI, Kim YS, Joo SK, J. Electrochem. Soc., 139, 3578, 1992
  11. Rantala TT, Levoska J, J. Appl. Phys., 65, 4475, 1989
  12. Simmonds MG, Phillips EC, Hwang J, Gladfelter WL, Chemtronics, 5, 155, 1991
  13. Tsao JY, Ehrlich DJ, Appl. Phys. Lett., 45, 617, 1984
  14. Venables JA, Spiller GDT, Hanbucken M, Rep. Prog. Phys., 47, 399, 1984