Issue
Korean Journal of Chemical Engineering,
Vol.28, No.5, 1293-1298, 2011
A crossover multi-fluid nonrandom lattice fluid model for pure hydrocarbons and carbon dioxide near to and far from the critical region
The multi-fluid nonrandom lattice fluid model with the local composition concept is capable of describing thermodynamic properties for complex systems, but this model cannot represent the singular behavior of fluids near the critical region. In this research, the multi-fluid nonrandom lattice fluid model for pure fluids is combined with a crossover theory to obtain a crossover multi-fluid nonrandom lattice fluid model which incorporates the critical scaling laws valid asymptotically close to the critical point and reduces to the original classical multi-fluid nonrandom model far from the critical point. The crossover multi-fluid nonrandom lattice fluid model shows a great improvement in prediction of the thermodynamic properties of pure compounds near the critical region.
[References]
  1. Sanchez IC, Lacombe RH, J. Phys. Chem., 80, 2352, 1976
  2. Lacombe RH, Sanchez IC, J. Phys. Chem., 80, 2368, 1976
  3. Shin MS, Kim H, Fluid Phase Equilib., 246(1-2), 79, 2006
  4. Shin MS, Yoo KP, Lee CS, Kim H, Korean J. Chem. Eng., 23(3), 469, 2006
  5. Shin MS, Yoo KP, Lee CS, Kim H, Korean J. Chem. Eng., 23(3), 476, 2006
  6. Anisimov MA, Povodyrev AA, Sengers JV, Fluid Phase Equilib., 158, 537, 1999
  7. Kiselev SB, Friend DG, Fluid Phase Equilib., 162(1-2), 51, 1999
  8. Kiselev SB, Ely JF, Ind. Eng. Chem. Res., 38, 4993, 1993
  9. Lee Y, Shin MS, Yeo JK, Kim H, J. Chem. Thermodyn., 39(9), 1257, 2007
  10. Shin MS, Lee Y, Kim H, J. Chem. Thermodyn., 40(2), 174, 2008
  11. Shin MS, Lee Y, Kim H, J. Chem. Thermodyn., 40(4), 688, 2008
  12. Lee Y, Shin MS, Ha B, Kim H, J. Chem. Thermodyn., 40(5), 741, 2008
  13. Lee Y, Shin MS, Kim H, J. Chem. Thermodyn., 40(11), 1580, 2008
  14. Lee Y, Shin MS, Kim H, J. Chem. Phys., 129, 203503, 2008
  15. Shin MS, Korean J. Chem. Eng., 27(4), 1286, 2010
  16. Yoo KP, Shin HY, Lee CS, Bull. Korean Chem. Soc., 18, 841, 1997
  17. Yoo KP, Shin HY, Lee CS, Bull. Korean Chem. Soc., 18, 965, 1997
  18. Yoo KP, Shin HY, Hwang SY, Lee CS, Fluid Phase Equilib., 150, 191, 1998
  19. Shin HY, Yoo KP, Lee CS, Tamura K, Arai Y, Korean J. Chem. Eng., 15(1), 15, 1998
  20. Oh BC, Shin HY, Kim H, Korean J. Chem. Eng., 20(5), 911, 2003
  21. Shin HY, Haruki M, Yoo KP, Iwai Y, Arai Y, Fluid Phase Equilib., 189(1-2), 49, 2001
  22. Shin MS, Kim H, Fluid Phase Equilib., 253(1), 29, 2007
  23. Jang SH, Shin MS, Kim HY, Korean J. Chem. Eng., 26(1), 225, 2009
  24. Panayiotou C, Vera JH, Polymer J., 14, 681, 1982
  25. Kumar SK, Suter UW, Reid RC, Ind. Eng. Chem. Res., 26, 2532, 1987
  26. Gauter K, Heidemann RA, Ind. Eng. Chem. Res., 39(4), 1115, 2000
  27. Kiselev SB, Ely JF, Fluid Phase Equilib., 119, 8645, 2003
  28. Anisimov MA, Kiselev SB, Sengers JV, Tang S, Physica A., 188, 487, 1992
  29. Kang J, Yoo K, Kim H, Lee J, Yang D, Lee C, Int. J. Thermophys., 22, 487, 2001