Issue
Korean Journal of Chemical Engineering,
Vol.28, No.5, 1286-1292, 2011
Predicting the vapor-liquid equilibrium of carbon dioxide+alkanol systems by using an artificial neural network
A multi-layer feed-forward artificial neural network has been presented for accurate prediction of the vapor liquid equilibrium (VLE) of CO2+alkanol mixtures. Different types of alkanols namely, 1-propaol, 2-propanol, 1-butanol, 1-pentanol, 2-pentanol, 1-hexanol and 1-heptanol, are used in this study. The proposed network is trained using the Levenberg-Marquardt back propagation algorithm, and the tan-sigmoid activation function is applied to calculate the output values of the neurons of the hidden layers. According to the network's training, validation and testing results, a six layer neural network is selected as the best architecture. The presented model is very accurate over wide ranges of experimental pressure and temperatures. Comparison of the suggested neural network model with the most important thermodynamic correlations shows that the proposed neuromorphic model outperforms the other available alternatives. The predicted equilibrium pressure and vapor phase CO2 mole fraction are in good agreement with experimental data suggesting the accuracy of the proposed neural network model for process design.
[References]
  1. Beckman EJ, J. Supercrit. Fluids, 28(2-3), 121, 2004
  2. Joung SN, Yoo CW, Shin HY, Kim SY, Yoo KP, Lee CS, Huh WS, Fluid Phase Equilib., 185(1-2), 219, 2001
  3. CRC Handbook of Chemistry and Physics, 89th Ed., CRC Publishing, USA, 2008
  4. Orbey H, Sandler SI, Modeling vapor-liquid equilibria: Cubic equations of state and their mixing rules, Cambridge Univ. Press, Cambridge, 1998
  5. Castier M, Galicia-Luna LA, Sandler SI, Braz. J. Chem. Eng., 21, 2004
  6. Elizalde-Solis O, Galicia-Luna LA, Sandler SI, Sampayo-Hernandez JG, Fluid Phase Equilib., 210(2), 215, 2003
  7. Peng DY, Robinson DB, Ind. Eng. Chem. Fund., 15, 59, 1976
  8. Wong DSH, Sandler SI, AIChE J., 38, 671, 1992
  9. Secuianu C, Feroiu V, Geana D, Fluid Phase Equilib., 261(1-2), 337, 2007
  10. Secuianu C, Feroiu V, Geana D, Fluid Phase Equilib., 270(1-2), 109, 2008
  11. Soave G, Chem. Eng. Sci., 27, 1197, 1972
  12. Huron M, Vidal J, Fluid Phase Equilib., 3, 255, 1979
  13. Wisniewska-Goclowska B, Malanowski SK, Fluid Phase Equilib., 180(1-2), 103, 2001
  14. Lee HS, Lee H, Fluid Phase Equilib., 695, 150, 1998
  15. Silva-Oliver G, Galicia-Luna LA, Sandler SI, Fluid Phase Equilib., 200(1), 161, 2002
  16. Elizalde-Solis O, Galicia-Luna LA, Camacho-Camacho LE, Fluid Phase Equilib., 259(1), 23, 2007
  17. Alvarez VH, Larico R, Ianos Y, Aznar M, Braz. J. Chem. Eng., 25, 2008
  18. Guimaraes PR, Mcgreavy C, Comput. Chem. Eng., 19(S), 741, 1995
  19. Graupe D, Principles of Artificial Neural Networks, 2nd Ed., WSPC, USA, 2007
  20. Benardos PG, Vosniakos GC, Engineering Applications of Artificial Intelligence., 20, 365, 2007
  21. Patel NC, Teja AS, Chem. Eng. Sci., 37, 463, 1982