Issue
Korean Journal of Chemical Engineering,
Vol.28, No.5, 1272-1279, 2011
Adsorption behavior of L-tryptophan on ion exchange resin
A batch method was applied to investigate the adsorption behavior and mechanisms of L-tryptophan (Ltrp) on ion exchange resins. HZ-001 and JK006 were proved to be ideal adsorbents due to their large loading capacity and favorable selective adsorption for L-trp. Langmuir, Freundlich, and Dubinin-Radushkevich equations were applied to simulate the experimental data to describe the adsorption process of L-trp onto HZ-001 and JK006. The maximum loading capacity (at pH 5.0, 30℃ ), determined by the Langmuir and Dubinin-Radushkevich models, was close to each other (833 mg/g vs. 874 mg/g) for HZ-001, while discrepant (833 mg/g vs. 935 mg/g) for JK006. Three diffusion-controlled kinetic models were utilized to analyze the results in order to identify the adsorption mechanism. The adsorption kinetics of L-trp onto cation exchange resins was investigated under different experimental conditions, including initial solution pH, temperature, initial L-trp concentration, and adsorbent dosage. Moreover, the diffusion process of L-trp onto HZ-001 and JK006 was evaluated at different initial adsorbate concentrations. The thermodynamic parameters, obtained from the kinetic data, demonstrated that L-trp could be adsorbed spontaneously onto both resins.
[References]
  1. Azuma S, Tsunekawa H, Okabe M, Okamoto R, Aiba S, Appl. Microbiol. Biotechnol., 39, 471, 1993
  2. Kocabas P, Calik P, Ozdamar TH, Enzyme Microb. Technol., 39(5), 1077, 2006
  3. Katsumata R, Ikeda M, Nat. Biotechnol., 11, 921, 1993
  4. Ikeda M, Appl. Microbiol. Biotechnol., 69, 615, 2005
  5. Chubar NI, Samanidou VF, Kouts VS, Gallios GG, Kanibolotsky VA, Strelko VV, Zhuravlev IZ, J. Colloid Interface Sci., 291(1), 67, 2005
  6. Rengaraj S, Moon SH, Water Res., 36, 1783, 2002
  7. Chabani M, Amrane A, Bensmaili A, Chem. Eng. J., 125(2), 111, 2006
  8. Annesini M, Dicarlo C, Piemonte V, Turchetti L, Biochem. Eng. J., 40, 205, 2008
  9. Rengaraj S, Yeon JW, Kim Y, Jung Y, Ha YK, Kim WH, J. Hazard. Mater., 143(1-2), 469, 2007
  10. Weber WJ, DiGiano FA, Process dynamics in environmental systems, Wiley & Sons, New York, 1996
  11. Guibal E, Milot C, Tobin JM, Ind. Eng. Chem. Res., 37(4), 1454, 1998
  12. Khraisheh MAM, Al-Degs YS, Allen SJ, Ahmed MN, Ind. Eng. Chem. Res., 41(6), 1651, 2002
  13. Chen Y, Xu Z, Shen W, Lin J, Cen P, Korean J. Chem. Eng., 22(1), 121, 2005
  14. Lee CK, Low KS, Chew SL, Adv. Environ. Res., 3, 343, 1999
  15. Weber JW, Morris JC, J. Sanit. Eng. Div., Am. Soc. Civ. Eng., 89, 31, 1963
  16. Kobya M, Demirba E , Yesilot S, Baskaya R, Adsorpt. Sci. Technol., 24, 131, 2006
  17. Ozcan A, Ozcan AS, Tunali S, Akar T, Kiran I, J. Hazard. Mater., B124, 200, 2005
  18. Onyango MS, Kojima Y, Aoyi O, Bernardo EC, Matsuda H, J. Colloid Interface Sci., 279(2), 341, 2004
  19. Kim CM, Kang JH, Moon H, Korean J. Chem. Eng., 12(1), 72, 1995
  20. Purkait MK, DasGupta S, De S, J. Environ. Manage., 76, 135, 2005
  21. Ajmal M, Rao RA, Khan MA, J. Hazard. Mater., B122, 177, 2005
  22. Naseem R, Tahir SS, Water Res., 35, 3982, 2001