Issue
Korean Journal of Chemical Engineering,
Vol.28, No.5, 1252-1259, 2011
Isolation of the polysaccharidase-producing bacteria from the gut of sea snail, Batillus cornutus
This study was conducted to isolate microorganisms from the gut of the marine turban shell, Batillus cornutus, which inhabits the mainland of South Korea and primarily feeds on brown algae. We were interested in isolating such gut bacteria by considering their potential to produce the polysaccharidases required for digestion of brown seaweeds and isolated three different bacteria from the gut of Batillus cornutus. The isolated bacteria were identified as Bacillus sp. JMP-A, Bacillus sp. JMP-B and Staphylococcus sp. JMP-C. The organisms were evaluated for their ability to produce polysaccharidases such as cellulase, alginate lyase, laminarinase and kelp-lyase. Bacillus sp. JMP-A and Bacillus sp. JMP-B showed a clear zone of CMC hydrolysis with a radius 1.10 (±0.057) and 3.88 cm (±0.088), respectively, whereas Staphylococcus sp. JMP-C showed no zone of CMC hydrolysis. SEM analysis confirmed that the ability of the bacterial isolates to degrade kelp differs and is correlated with kelp-lyase production. The cell free extract of the Bacillus sp. JMP-A isolate showed the highest activities of CM-cellulase, α-cellulase, laminarinase and kelp-lyase, which were 22.76, 27.10, 66.59 and 64.36 U/mg, respectively. Meanwhile, the amount of sugars released was higher during the saccharification of kelp by dialyzed intracellular enzymes of the bacterial isolates than when dialyzed extracellular enzyme was used. Experimental results of dialyzed enzymatic saccharification of the kelp demonstrated that use of partially purified enzymes was effective for glucose production.
[References]
  1. Cannell RJP, Appl. Biochem. Biotechnol., 26, 85, 1990
  2. Tang JC, Taniguchi H, Chu H, Zhou Q, Nagata S, Lett. Appl. Microbiol., 48, 38, 2009
  3. Lee MO, Kim JK, Marine Environ. Res., 65, 128, 2008
  4. Zvyagintseva TN, Shevchenko NM, Popivnich IB, Isakov VV, Scobun AS, Sundukova EV, Elyakova LA, Carbohydr. Res., 322, 32, 1999
  5. Adams JM, Gallagher JA, Donnison IS, J. Appl. Phycol., 21, 569, 2009
  6. Saha S, Roy R, Sen SK, Ray AK, Aquaculture Res., 37, 380, 2006
  7. Nishida Y, Suzuki KI, Kumagai Y, Tanaka H, Inoue A, Ojima T, Biochimie., 1, 2007
  8. Lee YJ, Kim BK, Lee BH, Jo KI, Lee NK, Chung CH, Lee YC, Lee JW, Bioresour. Technol., 99(2), 378, 2008
  9. Zhou M, Han F, Li J, Zhao X, J. Sci. Technol., 30, 135, 2008
  10. Hu XK, Jiang XL, Hwang HM, Curr. Microbiol., 53(2), 135, 2006
  11. Allardyce BJ, Linton SM, J. Experiment. Biol., 211, 2275, 2008
  12. Mai K, Mercer JP, Donlon J, Aquaculture., 134, 65, 1995
  13. Takami H, Kawamura T, Yamashita Y, J. Shellfish Res., 17, 723, 1998
  14. Johnston D, Moltschaniwskyj N, Wells J, Aquaculture., 250, 341, 2005
  15. Erasmus JH, Cook PA, Coyne VE, Aquaculture., 155, 377, 1997
  16. Sawabe T, Setoguchi N, Inoue S, Tanaka R, Otsubo M, Yoshimizu M, Ezura Y, Aquaculture., 219, 671, 2003
  17. Simon CA, McQuaid C, J. Experiment. Mar. Biol. Ecol., 234, 59, 1999
  18. Wheals AE, Basso LC, Alves DM, Amorim HV, Trends Biotechnol., 17, 482, 1999
  19. Carlsson A, VanBeilen J, Moller R, Clayton D, Micro- and macro-algae: Utility for industrial applications, University of York, York, UK, 2007
  20. Dubey RC, Maheshwari DK, Practical Microbiology, India, 2004
  21. Saitou N, Nei M, Mol. Biol. Evol., 4, 406, 1987
  22. Felsenstein J, Evolution., 39, 783, 1985
  23. Jukes TH, Cantor CR, Evolution of protein molecules, Academic Press, New York, 21, 1969
  24. Tamura K, Dudley J, Nei M, Kumar S, Mol. Biol. Evol., 24, 1596, 2007
  25. Teather RM, Wood PJ, Appl. Environ. Microbiol., 43, 777, 1982
  26. Atlas RM, Snyder JW, Handbook of Media for Clinical Microbiology, II Ed. CRC Press, Taylor and Francis Group, 2006
  27. Ekperigin MM, African J. Biotechnol., 6, 28, 2007
  28. El-Katatny MH, Hetta AM, Shaban GM, El-Komy HM, Food Technol. Biotechnol., 41, 219, 2003
  29. Ghose TK, Pure Appl. Chem., 59, 257, 1987
  30. Lowry OH, Rosebrough NJ, Farr AL, Randall RJ, J. Biol. Chem., 193, 265, 1951
  31. Sadasivam S, Manickam A, Biochemical Methods (Revised 2nd Ed.) New Age International (P) Ltd. Publishers India, 2005
  32. MacDonald NL, Stark JR, Austin B, FEMS Microbiol. Lett., 35, 107, 1986
  33. Konig H, J. Appl. Microbiol., 101(3), 620, 2006
  34. Jung SC, Paik HR, Kim MS, Baik KS, Lee WY, Seong CN, Choi SK, J. Microbiol., 45, 402, 2007
  35. Palanichamy E, Mariappan R, Arunachalam P, Grasian I, Ann. Microbiol., 60, 37, 2010
  36. Krairitthichai S, Thongwai N, The 34th Congress on Science and Technology of Thailand (STT34), Thailand, 2008
  37. Krootdilaganandh J, Isolation and selection of thermo-tolerant bacteria capable of producing cellulase, Chiang Mai University Press, 20, 2000
  38. Chahal DS, Appl. Environ. Microbiol., 49, 205, 1985
  39. Sohail M, Siddiqi R, Ahmad A, Khan SA, New Biotechnol., 25, 437, 2009
  40. Kim SW, Kang SW, Lee JS, Bioresour. Technol., 59(1), 63, 1997
  41. Kang SW, Park YS, Lee JS, Hong SI, Kim SW, Bioresour. Technol., 91(2), 153, 2004
  42. Pagnol-Descamps VL, Richard C, Lahaye M, Potin P, Yvin JC, Kloareg B, Carbohydr. Res., 310, 283, 1998
  43. Wang YH, Yu GL, Wang XM, Lv ZH, Zhao X, Wu ZH, Ji WS, Acta Biochimica. et. Biophysica. Sinica., 38, 633, 2006
  44. Eka OU, Fogarty WM, European J. Appl. Microbiol., 1, 13, 1975
  45. Helisto P, Aktuganov G, Galimzianova N, Melentjev A, Korpelaa T, J. Chromatography B., 758, 197, 2001
  46. Choi DB, Sim HS, Piao YL, Ying W, Cho H, J. Ind. Eng. Chem., 15(1), 12, 2009
  47. Wi SG, Kim HJ, Mahadevan SA, Yang DJ, Bae HJ, Biores. Technol., 100, 6658, 2009