Issue
Korean Journal of Chemical Engineering,
Vol.28, No.5, 1214-1220, 2011
Solar photocatalytic detoxification of cyanide by different forms of TiO2
The photocatalytic efficiencies of TiO2 nanocrystals of different modifications (anatase, rutile, P25 Degussa, Hombikat), to oxidize cyanide ion and subsequently the cyanate also, under natural sunlight at 950±25W m.2 in alkaline solution have been compared. The oxides have been characterized by powder XRD, UV-visible diffuse reflectance and impedance spectroscopies. Under identical solar irradiance, the reaction follows Langmuir-Hinshelwood kinetics on cyanide, and depends on the apparent area of the catalyst bed and dissolved oxygen. However, the adsorption of cyanide on TiO2 in dark is too small to be measured analytically. The photocatalytic activity of TiO2 is not solely governed by the band gap or charge-transfer resistance or capacitance or phase composition but is in accordance with the specific surface area or the average crystallite size; rutile is an exception.
[References]
  1. Marugan J, van Grieken R, Cassano AE, Alfano OM, Catal. Today., 144, 87, 2009
  2. Marugan J, van Grieken R, Cassano AE, Alfano OM, Appl. Catal. B: Environ., 85(1-2), 48, 2008
  3. Karunakaran C, in Photo/Electrochemistry & Photobiology in the Environment, Energy and Fuel, Kaneco S Ed., Research Signpost, Trivandrum, 2006
  4. Bozzi A, Guasaquillo I, Kiwi J, Appl. Catal. B: Environ., 51(3), 203, 2004
  5. Chiang K, Amal R, Tran T, J. Mol. Catal. A-Chem., 193(1-2), 285, 2003
  6. Hernandez-Alsonso MD, Coronado JM, Maira AJ, Soria J, Loddo V, Augugliaro V, Appl. Catal. B: Environ., 39(3), 257, 2002
  7. Augugliaro V, Loddo V, Marci G, Palmisano L, Lopezmunoz MJ, J. Catal., 166(2), 272, 1997
  8. Thiruvenkatachari R, Vigneswaran S, Moon IS, Korean J. Chem. Eng., 25, 65, 2008
  9. Thompson TL, Yates JT, Chem. Rev., 106(10), 4428, 2006
  10. Osgood R, Chem. Rev., 106(10), 4379, 2006
  11. Zhao J, Li B, Onda K, Feng M, Petek H, Chem. Rev., 106(10), 4402, 2006
  12. Peller J, Wiest O, Kamat PV, J. Phys. Chem. A, 108(50), 10925, 2004
  13. Shiraishi Y, Saito N, Hirai T, J. Am. Chem. Soc., 127(37), 12820, 2005
  14. Du YK, Rabani J, J. Phys. Chem. B, 107(43), 11970, 2003
  15. Sun LZ, Bolton JR, J. Phys. Chem., 100(10), 4127, 1996
  16. Chiang K, Amal R, Tran T, Adv. Environ. Res., 6, 471, 2002
  17. Kim HI, Lu L, Kim JH, Lee CH, Hyeon T, Choi W, Lee HI, Bull. Korean Chem. Soc., 22, 1371, 2001
  18. Ryu J, Choi W, Environ. Sci. Technol., 42, 294, 2008
  19. Karunakaran P, Anilkumar P, Manikandan G, Gomathisankar P, Sol. Energy Mater. Sol. Cells., 94, 900, 2010
  20. Nagaraja P, Hemanthakumar MS, Yathirajan HS, Prakash JS, Anal. Sci., 18, 1027, 2002
  21. Kuhn HJ, Braslavsky SE, Schmidt R, Pure Appl. Chem., 76, 2105, 2004
  22. Jung S, Kim JH, Korean J. Chem. Eng., 27(2), 645, 2010
  23. Bard AJ, Faulkner LR, Electrochemical methods: Fundamentals and applications, 2nd Ed., Wiley, 2000
  24. Karunakaran C, Senthilvelan S, Karuthapandian S, J. Photochem. Photobiol. A., 172, 207, 2005
  25. Hirano K, Nitta H, Sawada K, Ultrason. Sonochem., 12, 271, 2005
  26. Reddy EP, Davydov L, Smirniotis P, Appl. Catal. B: Environ., 42(1), 1, 2003
  27. Christensen PA, Egerton TA, Kosa SAM, Tinlin JR, Scott K, J. Appl. Electrochem., 35(7), 683, 2005
  28. McMurray TA, Byrne JA, Dunlop PSM, McAdams ET, J. Appl. Electrochem., 35(7), 723, 2005
  29. Karunakaran C, Anilkumar P, Cent. Eur. J. Chem., 7, 519, 2009
  30. Xin B, Ren Z, Hu H, Zhang X, Dong C, Shi K, Jing L, Fu H, Appl. Surf. Sci., 252, 2005
  31. Yun HJ, Lee H, Kim ND, Yi J, Electrochem. Commun., 11, 363, 2009
  32. Sclafani A, Herrmann JM, J. Phys. Chem., 100(32), 13655, 1996
  33. Ding Z, Lu GQ, Greenfield PF, J. Phys. Chem. B, 104(19), 4815, 2000
  34. Yan MC, Chen F, Zhang JL, Anpo M, J. Phys. Chem. B, 109(18), 8673, 2005
  35. Hurum DC, Agrios AG, Gray KA, Rajh T, Thurnauer MC, J. Phys. Chem. B, 107(19), 4545, 2003