Issue
Korean Journal of Chemical Engineering,
Vol.28, No.5, 1181-1187, 2011
Computational fluid dynamics modeling of high temperature air combustion in an heat recovery steam generator boiler
This paper reports a numerical study on the possibility of using high temperature air combustion (HiTAC) technique in the heat recovery steam generator (HRSG) boiler of the Fajr Petrochemical Complex, Iran. For this purpose a theoretical fuel nozzle which operates in HiTAC mode of combustion has been installed and modeled using the computational fluid dynamics (CFD) technique. By aim of establishing an efficient heat transfer rate to the boiler’s tubes, the proper nozzle location and an optimum mass flow rate of fuel have been found. The results show that by using this modification it is possible to increase the steam temperature up to 37 percent.
[References]
  1. Tanaka R, Hasegawa T, Innovative technology to change flame characteristics with highly preheated air combustion., Proceedings of Japanese Flame Days, Osaka, 129, 1997
  2. Kong L, Ding Y, Zhang Y, Yuan L, Wu Z, Korean J. Chem. Eng., 26(2), 534, 2009
  3. Wu SR, Chang WC, Chiao J, Fuel., 86, 820, 2007
  4. Chung DH, Yang JB, Noh DS, Kim WB, Korean J. Chem. Eng., 16(4), 489, 1999
  5. Benini E, Pandolfo S, Zoppellari S, Appl. Therm. Eng., 29, 3506, 2009
  6. Kitagawa K, Konishi N, Arai N, Gupta AK, J. Gas. Turb. Power., 125, 326, 2003
  7. Gupta AK, Li Z, J. Energy Res., 5, 247, 1997
  8. Christo E, Combust. Flame, 142(1-2), 117, 2005
  9. Lille S, Blasiak W, Jewartowski M, Energy, 30(2-4), 373, 2005
  10. Kim SH, Huh KY, Dally B, Proc. Combust. Inst., 30, 751, 2005
  11. Rahimi M, Khoshhal A, Shariati SM, Appl. Therm. Eng., 26, 2192, 2006
  12. Khoshhal A, Rahimi M, Alsairafi AA, Int. Commun. Heat Mass Trans., 36, 750, 2009
  13. Seo HK, Shin DH, Chung JH, Kim BJ, Park SM, Lim HC, Korean J. Chem. Eng., 26(1), 72, 2009
  14. Liu H, Xin N, Cao Q, Sha L, Sun D, Wu S, Korean J. Chem. Eng., 26(4), 1137, 2009
  15. Orsino S, Weber R, Combust. Sci. Technol., 170, 1, 2001
  16. Kawai K, Yoshikawa K, Kobayashi H, Tsai JS, Matsuo M, Katsushima H, Energy Conv. Manag., 43(9-12), 1563, 2002
  17. Khazaei KA, Hamidi AA, Rahimi M, Chin. J. Chem. Eng., 17(5), 711, 2009
  18. Franco A, Casarosa C, Appl. Therm. Eng., 22, 1501, 2002
  19. Fluent Inc., Fluent 6.2 User’s Guide, 2005
  20. Versteeg HK, Malalasekera W An introduction to computa-tional fluid dynamics; the finite volume method, Longman Scientific and Technical, 1995
  21. Magnussen BF, Hjertager BH, On mathematical models of turbulent combustion with special emphasis on soot formation and combustion, 16th Symposium on combustion, The Combustion Institute, 1976
  22. Siegel R, Howell JR, Thermal radiation heat transfer, 3rd Ed. Washington, Hemisphere Publishing Corporation, 1992
  23. Chui E, Raithby G, Numeric. Heat Transfer, Part B., 23, 269, 1993