Issue
Korean Journal of Chemical Engineering,
Vol.28, No.5, 1177-1180, 2011
Catalytic decomposition of benzyl phenyl ether to aromatics over cesium-exchanged heteropolyacid catalyst
Cesium-exchanged CsxH3.0-xPW12O40 (X=2.0-3.0) heteropolyacid catalysts were prepared and applied to the decomposition of benzyl phenyl ether to aromatics. Benzyl phenyl ether was chosen as a lignin model compound for representing α-O-4 bond in lignin. Phenol, benzene, and toluene were mainly produced by the decomposition of benzyl phenyl ether. Conversion of benzyl phenyl ether and total yield for main products (phenol, benzene, and toluene) were closely related to the surface acidity of CsxH3.0-xPW12O40 (X=2.0-3.0) heteropolyacid catalyst. Conversion of benzyl phenyl ether and total yield for main products increased with increasing surface acidity of the catalyst. Among the catalysts tested, Cs2.5H0.5PW12O40 with the largest surface acidity showed the highest conversion of benzyl phenyl ether and total yield for main products.
[References]
  1. Demirbas A, Energy Conv. Manag., 42(11), 1357, 2001
  2. Zakzeski J, Bruijnincx PCA, Jongerius AL, Weckhuysen BM, Chem. Rev., 10, 3552, 2010
  3. Kleinert M, Barth T, Chem. Eng. Technol., 31(5), 736, 2008
  4. Nimz HH, Casten R, Holz Roh-Werkstoff., 44, 207, 1986
  5. Amen-Chen C, Pakdel H, Roy C, Bioresour. Technol., 79(3), 277, 2001
  6. Klein MT, Virk PS, Ind. Eng. Chem. Fundam., 22, 35, 1983
  7. Britt PF, Kidder MK, Buchanan AC, Energy Fuels, 21(6), 3102, 2007
  8. Sharma RK, Bakhshi NN, Bioresour. Technol., 35, 57, 1991
  9. ADJAYE JD, BAKHSHI NN, Fuel Process. Technol., 45(3), 161, 1995
  10. Sheu YHE, Anthony RG, Soltes EJ, Fuel Process Technol., 19, 31, 1998
  11. Petrocelli FP, Klein MT, Ind. Eng. Chem. Prod. Res. Dev., 24, 635, 1985
  12. Kallury RKMR, Restivo WM, Tidwell TT, Boocock DGB, Crimi A, Douglas J, J. Catal., 96, 535, 1985
  13. Koyama M, Bioresour. Technol., 44, 209, 1993
  14. Yan N, Zhao C, Dyson PJ, Wang C, Liu LT, Kou Y, Chem. Sus. Chem., 1, 626, 2008
  15. Yang QH, Liu J, Yang J, Kapoor MP, Inagaki S, Li C, J. Catal., 228(2), 265, 2004
  16. Seo JG, Youn MH, Cho KM, Park S, Lee SH, Lee J, Song IK, Korean J. Chem. Eng., 25(1), 41, 2008
  17. Park S, Lee SH, Song SH, Park DR, Baeck SH, Kim TJ, Chung YM, Oh SH, Song IK, Catal. Commun., 10, 391, 2009
  18. Okuhara T, Mizuno N, Misono M, Adv. Catal., 41, 113, 1996
  19. Youn MH, Park DR, Jung JC, Kim H, Barteau MA, Song IK, Korean J. Chem. Eng., 24(1), 51, 2007
  20. Song IK, Barteau MA, Korean J. Chem. Eng., 19(4), 567, 2002
  21. Corma A, Martinez A, Martinez C, J. Catal., 164(2), 422, 1996
  22. Lee H, Jung JC, Kim H, Chung YM, Kim TJ, Lee SJ, Oh SH, Kim YS, Song IK, Korean J. Chem. Eng., 26(4), 994, 2009
  23. Britt PF, Buchanan AC, Cooney MJ, Martineau DR, J. Org. Chem., 65, 1376, 2000
  24. Park HW, Park S, Park DR, Choi JH, Song IK, Catal. Commun., 12, 1, 2010
  25. Sato Y, Yamakawa T, Ind. Eng. Chem. Fundam., 24, 12, 1985