Issue
Korean Journal of Chemical Engineering,
Vol.28, No.4, 1139-1143, 2011
Total oxidation of propane over Cu-Mn mixed oxide catalysts prepared by co-precipitation method
The catalytic activity of Cu-Mn mixed oxides with varying Cu/Mn ratios prepared by co-precipitation method was examined for the total oxidation of propane. The nature and phase of the metal oxide species formed were characterized by various methods such as X-ray diffraction (XRD), X-ray photoelectron spectroscopy (XPS), H2 temperature-programmed reduction (TPR) as well as BET surface area measurement. The co-precipitation method provides highly interdispersed copper and manganese metallic elements forming Cu-Mn mixed oxide of spinel structure (Cu1.5 Mn1.5O4). Besides the spinel-type Cu-Mn mixed oxide, CuO or Mn2O3 phases could be formed depending on the Cu/Mn molar ratio of their precursors. The catalytic activity of Cu-Mn mixed oxide catalyst for propane oxidation was much higher than those of single metal oxides of CuO and Mn2O3. The higher catalytic activity likely originates from a synergic effect of spinel-type Cu-Mn mixed oxide and CuO. The easier reducibility and BET surface area seems to be partially responsible for the high activity of Cu-Mn mixed oxide for total oxidation of propane.
[References]
  1. Neyestanaki AK, Kumar N, Lindfors LE, Appl. Catal. B: Environ., 7(1-2), 95, 1995
  2. Ferrandon M, Carno J, Jaras S, Bjornbom E, Appl. Catal. A: Gen., 180(1-2), 141, 1999
  3. Papaefthimiou P, Ioannides T, Verykios XE, Appl. Catal. B: Environ., 15(1-2), 75, 1998
  4. Morales MR, Barbero BP, Cadus LE, Appl. Catal. B: Environ., 67(3-4), 229, 2006
  5. Marecot P, Fakche A, Kellali B, Mabilon G, Prigent M, Barbier J, Appl. Catal. B: Environ., 3(4), 283, 1994
  6. Garetto TF, Rincon E, Apesteguia CR, Appl. Catal. B: Environ., 48(3), 167, 2004
  7. Yazawa Y, Takagi N, Yoshida H, Komai S, Satsuma A, Tanaka T, Yoshida S, Hattori T, Appl. Catal. A: Gen., 233(1-2), 103, 2002
  8. Carno J, Ferrandon M, Bjornbom E, Jaras S, Appl. Catal. A: Gen., 155(2), 265, 1997
  9. Craciun R, Nentwick B, Hadjiivanov K, Knozinger H, Appl. Catal. A: Gen., 243(1), 67, 2003
  10. Mirzaei AA, Shaterian HR, Kaykhaii M, Appl. Surf. Sci., 239(2), 246, 2005
  11. Fortunato G, Oswald HR, Reller A, J. Mater. Chem., 11, 905, 2001
  12. Kramer M, Schmidt T, Stowe K, Maier WF, Appl. Catal. A: Gen., 302(2), 257, 2006
  13. Jones C, Cole KJ, Taylor SH, Crudace MJ, Hutchings GJ, J. Mol. Catal. A-Chem., 305(1-2), 121, 2009
  14. Njagi EC, Chen CH, Genuino H, Galindo H, Huang H, Suib SL, Appl. Catal. B: Envron., 99, 103, 2004
  15. Hutchings GJ, Mirzaei AA, Joyner RW, Siddiqui MRH, Taylor SH, Appl. Catal. A: Gen., 166(1), 143, 1998
  16. Kanungo SB, J. Catal., 58, 419, 1979
  17. Chen H, Tong XL, Li YD, Appl. Catal. A: Gen., 370(1-2), 59, 2009
  18. Wollner A, Lange F, Schmelz H, Knozinger H, Appl. Catal. A: Gen., 94, 181, 1993
  19. Spassova I, Khristova M, Panayotov D, Mehandjiev D, J. Catal., 185(1), 43, 1999
  20. Zhi K, Liu Q, Zhang Y, He S, He R, J. Fuel Chem. Technol., 38, 445, 2010
  21. Tanaka Y, Takeguchi T, Kikuchi R, Eguchi K, Appl. Catal. A: Gen., 279(1-2), 59, 2005
  22. Sinha APB, Sanjana NR, Biswas AB, J. Phys. Chem., 62, 191, 1958
  23. Miahara S, J. Phys. Soc. Jpn., 17B-I, 181, 1962
  24. Lasse GB, J. Phys. Chem. Solids., 27, 383, 1966
  25. Veprek S, Cocke DL, Kehl S, Oswald HR, J. Catal., 100, 250, 1986
  26. Solsona B, Davies TE, Garcia T, Vazquez I, Dejoz A, Taylor SH, Appl. Catal. B: Environ., 84(1-2), 176, 2008
  27. Leith IR, Howden MG, Appl. Catal., 37, 75, 1992
  28. Gentry SJ, Hurst NW, Jones A, J. Chem. Soc. Faraday Trans. I., 77, 603, 1981
  29. Buciuman FC, Patcas F, Chem. Eng. Process., 38, 569, 1999