Issue
Korean Journal of Chemical Engineering,
Vol.27, No.5, 1404-1411, 2010
Combined experimental and kinetic modeling studies for the conversion of gasoline range hydrocarbons from methanol over modified HZSM-5 catalyst
The reaction was carried out in fixed bed reactor. The effect of process variables on the activity of oxalic acid treated 0.5 wt% ZnO/7 wt% CuO/HZSM5 catalyst for the conversion of methanol to gasoline range hydrocarbons was studied. The catalyst was prepared by incipient wetness impregnation method. After impregnation the catalyst was treated with oxalic acid. The validity of kinetic model proposed for the methanol to gasoline range hydrocarbon process at zero time on stream was studied, from the experimental results obtained in a wide range of operating conditions. The kinetic parameters for various models were calculated by solving the equation of mass conservation in the reactor for the lumps of the kinetic models. The kinetic model fitted well for simulating the operation in the fixed bed reactor in the range of 635 to 673 K,with regression coefficient (R2) higher than 0.96.
[References]
  1. Alyea EC, Bhat RN, Zeolites., 15, 318, 1995
  2. Choudhary VR, Kinage AK, Zeolites., 15, 732, 1995
  3. Calleja G, de. Lucas A, Van. Grieken R, Fuel., 74, 4451, 1995
  4. Chang CD, J. Catal., 86, 289, 1984
  5. Aljarallah AM, Elnafaty UA, Abdillahi MM, Appl. Catal. A: Gen., 154(1-2), 117, 1997
  6. Song WG, Marcus DM, Fu H, Ehresmann JO, Haw JF, J. Am. Chem. Soc., 124(15), 3844, 2002
  7. Patcas FC, J. Catal., 231(1), 194, 2005
  8. Ramos FS, de Farias AMD, Borges LEP, Monteiro JL, Fraga MA, Sousa-Aguiar EF, Appel LG, Catal. Today, 101(1), 39, 2005
  9. Chang CD, Chem. Eng. Sci., 35, 619, 1980
  10. Haw JF, Song W, Marcus DM, Nicholas JB, Acc. Chem., 36, 317, 2003
  11. Hutchings GJ, Watson GW, Willock DJ, Micro. Meso. Mater., 29, 67, 1999
  12. Kaeding W, Butter SA, J. Catal., 61, 155, 1980
  13. Abdillahi MM, El-Nafaty UA, Al-Jarallah AM, Appl. Catal.A: Gen., 91, 1, 1992
  14. Dewaele O, Geers VL, Froment GF, Marin GB, Chem. Eng. Sci., 54(20), 4385, 1999
  15. Marchi AJ, Froment GF, Appl. Catal. A: Gen., 94, 91, 1993
  16. Nishi K, Shimizu T, Yoshida H, Satsuma A, Hattori T, Appl. Catal. A: Gen., 166(2), 335, 1998
  17. Keil FJ, Micro. Meso. Mater., 29, 49, 1999
  18. Freeman D, Wells RPK, Hutchings GJ, J. Catal., 205(2), 358, 2002
  19. Inoue Y, Nakashiro K, Ono Y, Micro. Meso. Mater., 4, 379, 1995
  20. Mikkelsen O, Kolboe S, Micro. Meso. Mater., 29, 173, 2002
  21. Schoenfleder H, Hinder J, J. Werther J, Keil FJ, Chem. Eng.Sci., 49, 5377, 1994
  22. Stocker M, Micro. Meso. Mater., 38, 279, 2000
  23. Sedran U, Mahay A, Lasa HID, Chem. Eng. Sci., 45, 1161, 1990
  24. Chen M, Reagan WJ, J. Catal., 59, 123, 1979
  25. Gayubo G, Benito PL, Aguayo AT, Aguirre I, Bilbao J, Chem. Eng. J., 63, 45, 1996
  26. Schipper PH, Kramback FJ, Chem. Eng. Sci., 41, 1013, 1986
  27. Gayubo AG, Aguayo AT, del Campo AES, Tarrio AM, Bilbao J, Ind. Eng. Chem. Res., 39(2), 292, 2000
  28. Mihail RS, Satraja G, Maria, Musca G, Pop G, Chem. Eng.Sci., 38, 1581, 1983
  29. Zaidi HA, Pant KK, Catal. Today, 96(3), 155, 2004
  30. Zaidi HA, Pant KK, Korean J. Chem. Eng., 22(3), 353, 2005
  31. Zaidi HA, Pant KK, Ind. Eng. Chem. Res., 47(9), 2970, 2008
  32. Aguayo AT, Gayubo AG, Castilla M, Arandes JM, Olazar M, Bilbao J, Ind. Eng. Chem. Res., 40(26), 6087, 2001