Issue
Korean Journal of Chemical Engineering,
Vol.27, No.5, 1570-1575, 2010
Absorption of carbon dioxide in aqueous colloidal silica solution with NaOH
The absorption rate (R(A)) of carbon dioxide was measured into an aqueous nanometer-sized colloidal silica solution of 0-31 wt% and NaOH of 0-2 kmol/m3 in a flat-stirred vessel for various sizes and speeds of 25 ℃ and 101.3 N/m2 to obtain the volumetric liquid-side mass transfer coefficient (k(L)a(L)) of CO2. The film theory accompanied by chemical reaction between CO2 and NaOH was used to estimate the theoretical value of absorption rate of CO2. The empirical correlation formula containing the relationship between kLaL and rheological property of the aqueous colloidal silica solution was presented. The value of R(A) in the aqueous colloidal silica solution was decreased by the reduction of k(L)a(L) due to elasticity of the solution.
[References]
  1. Astarita G, Savage DW, Bisio A, Gas treatment with chemical solvents., John Wiley & Sons, New York, 1983
  2. Fan JM, Cui Z, Ind. Eng. Chem. Res., 44(17), 7010, 2005
  3. Yu JI, Ju HY, Kim KH, Park DW, Korean J. Chem. Eng., 27(2), 446, 2010
  4. Hozawa M, Inoue M, Sato J, Tsukada T, J. Chem. Eng. Jpn., 24, 209, 1991
  5. Keblinski P, Phillpot SR, Choi SUS, Eastman JA, Int. J. Heat Mass Transf., 45(4), 855, 2002
  6. Kim JK, Jung JY, Kang YT, Int. J. Refrigeration., 29, 22, 2006
  7. Kars RL, Best RJ, Chem. Eng. Sci., 17, 201, 1979
  8. Hikita H, Ishimi K, Ueda K, Koroyasu S, Ind. Eng. Chem. Process Des. Dev., 24, 261, 1985
  9. Zhou M, Cai WF, Xu CJ, Korean J. Chem. Eng., 20(2), 347, 2003
  10. Mehra A, Chem. Eng. Sci., 51, 461, 1995
  11. Astarita G, Greco Jr.GL, Nicodemo LA, AIChE J., 15, 564, 1969
  12. Nakanoh M, Yoshida F, Ind. Eng. Chem. Process Des. Dev., 19, 190, 1980
  13. Yagi H, Yoshida F, Ind. Eng. Chem. Process Des. Dev., 14, 488, 1975
  14. Ranade VR, Ulbrecht JJ, AIChE J., 24, 796, 1978
  15. Park SW, Sohn IJ, Park DW, Oh KJ, Sep. Sci. Technol., 38(6), 1361, 2003
  16. Park SW, Choi BS, Lee BD, Park DW, Kim SS, J. Ind. Eng. Chem., 10(6), 1033, 2004
  17. Park SW, Choi BS, Kim SS, Lee JW, Korean J. Chem. Eng., 21(6), 1205, 2004
  18. Park SW, Choi BS, Lee JW, Sep. Sci. Technol., 40(16), 3261, 2005
  19. Park SW, Lee JW, Choi BS, Lee JW, Sep. Sci. Technol., 41(8), 1661, 2006
  20. Park SW, Choi BS, Song KW, Oh KJ, Lee JW, Sep. Sci. Technol., 42(16), 3537, 2007
  21. Park SW, Choi BS, Lee JW, Sep. Sci. Technol., 41(14), 3265, 2006
  22. Park SW, Choi BS, Lee JW, Korea-Aust. Rheol. J., 18(3), 133, 2006
  23. Park SW, Choi BS, Kim SS, Lee JW, J. Ind. Eng. Chem., 13(1), 133, 2007
  24. Park SW, Choi BS, Kim SS, Lee BD, Lee JW, J. Ind. Eng. Chem., 14(2), 166, 2008
  25. Park SW, Choi BS, Oh KJ, Lee JW, J. Chem. Eng. Jpn., 41(7), 540, 2008
  26. Park SW, Choi BS, Kim SS, Lee JW, Korean J. Chem. Eng., 25(4), 819, 2008
  27. Hikita H, Asai S,Takatsuka T, Chem. Eng. J., 11, 131, 1976
  28. Kennard ML, Meisen A, J. Chem. Eng. Data., 29, 309, 1984
  29. Nijsing RATO, Hendriksz RH, Kramers H, Chem. Eng.Sci., 10, 88, 1959
  30. Danckwerts PV, Sharma MM, Chem. Eng., 44, 244, 1966
  31. Cussler EL, Diffusion., Cambridge University Press, New York, 1984
  32. Metzner AB, Otter RE, AIChE J., 3, 3, 1957
  33. Seyer FA, Metzner AB, AIChE J., 15, 426, 1969