Issue
Korean Journal of Chemical Engineering,
Vol.27, No.5, 1412-1418, 2010
Carbon nanofibers supported Ru catalyst for sorbitol hydrogenolysis to glycols: Effect of calcination
Carbon nanofiber (CNFs) supported Ru catalysts for sorbitol hydrogenolysis to ethylene glycol and propylene glycol were prepared by incipient wetness impregnation, calcination and reduction. The effect of calcination on catalyst properties was investigated using thermal gravimetry analysis, temperature-programmed reduction, X-ray diffraction, X-ray photoelectron spectroscopy, transmission electron microscopy and N2 physisorption. The results indicated that calcination introduced a great amount of surface oxygen-containing groups (SOCGs) onto CNF surface and induced the phase transformation of Ru species, but slightly changed the texture of Ru/CNFs. The catalytic performance in sorbitol hydrogenolysis showed that Ru/CNFs catalyst calcined at 240 ℃ presented the highest glycol selectivities and reasonable glycol yields. It was believed that the inhibition and confinement effect of SOCGs around Ru particles as well as the high dispersion of Ru particles was the key factor for the catalytic activity.
[References]
  1. Lee SW, Nam SS, Kim SB, Lee KW, Choi CS, Korean J. Chem. Eng., 17(2), 174, 2000
  2. Wang ZM, Lee JS, Park JY, Wu CZ, Yuan ZH, Korean J. Chem. Eng., 25(4), 670, 2008
  3. Wang ZM, Lee JS, Park JY, Wu CZ, Yuan ZH, Korean J. Chem. Eng., 24(6), 1027, 2007
  4. Werpy T, Petersen G, Aden A, Bozell J, Holladay J, White J, Manheim A, Elliot D, Lasure L, Jones S, Gerber M, Ibsen K, Lumberg L, Kelley S, U.S. Department of Energy Report, 2004
  5. Wang KY, Hawley MC, Furney TD, Ind. Eng. Chem. Res., 34(11), 3766, 1995
  6. Andrews MA, Klaeren SA, J. Am. Chem. Soc., 111, 4131, 1989
  7. Zhao L, Zhou JH, Sui ZJ, Zhou XG, Chem. Eng. Sci., 65, 30, 2009
  8. Somorjai GA, Rioux RM, Catal. Today, 100(3-4), 201, 2005
  9. Mazzieri V, Coloma-Pascual F, Arcoya A, L'Argentiere P, Figoli NS, Appl. Surf. Sci., 210(3-4), 222, 2003
  10. Koopman PGJ, Kieboom APG, Van Bekkum H, J. Catal., 69, 172, 1981
  11. Infantes-Molina A, Merida-Robles J, Rodriguez-Castellon E, Fierro JLG, Jimenez-Lopez A, Appl. Catal. A: Gen., 341(1-2), 35, 2008
  12. Cerro-Alarcon M, Maroto-Valiente A, Rodriguez-Ramos I, Guerrero-Ruiz A, Carbon., 43, 2711, 2005
  13. Zhou JH, Sui ZJ, Zhu J, Li P, Chen D, Dai YC, Yuan WK, Carbon., 45, 785, 2007
  14. Zielke U, Huttinger KJ, Hoffman WP, Carbon., 34, 983, 1996
  15. Lakshminarayanan PV, Toghiani H, Pittman Jr CU, Carbon., 42, 2433, 2004
  16. Pan JX, Li JH, Wang C, Yang ZY, React. Kinet. Catal. Lett., 90, 233, 2007
  17. Bock C, Paquet C, Couillard M, Botton GA, MacDougall BR, J. Am. Chem. Soc., 126(25), 8028, 2004
  18. Toebes ML, Prinsloo FF, Bitter JH, van Dillen AJ, de Jong KP, J. Catal., 214(1), 78, 2003
  19. Asedegbega-Nieto E, Bachiller-Baeza B, Kuvshinov DG, Garcia-Garcia FR, Chukanov E, Kuvshinov GG, Guerrero-Ruiz A, Rodriguez-Ramos I, Carbon., 46, 1046, 2008
  20. Toebes ML, Zhang YH, Hajek J, Nijhuis TA, Bitter JH, van Dillen AJ, Murzin DY, Koningsberger DC, de Jong KP, J. Catal., 226(1), 215, 2004
  21. Toebes ML, Nijhuis TA, Hajek J, Bitter JH, van Dillen AJ, Murzin DY, de Jong KP, Chem. Eng. Sci., 60(21), 5682, 2005
  22. Tang TD, Yin CY, Xiao N, Guo MY, Xiao FS, Catal. Lett., 127(3-4), 400, 2009
  23. Amorim C, Keane MA, J. Chem. Technol. Biotechnol., 83(5), 662, 2008
  24. Plomp AJ, Vuori H, Krause AOI, de Jong KP, Bitter JH, Appl. Catal. A: Gen., 351(1), 9, 2008