Issue
Korean Journal of Chemical Engineering,
Vol.27, No.5, 1428-1434, 2010
A study of the sulfidation and regeneration reaction cycles of Zn-Ti-based sorbents with different crystal structures
The reaction cycles of the sulfidation and regeneration of Zn-Ti-based sorbents prepared by a physical mixing method (ZT-700 and ZT-1000) or co-precipitation method (ZT-cp) were tested in a fixed bed micro-reactor at middle temperature (Sulfidation; 480 ℃, regeneration; 580 ℃). The ZnS produced during sulfidation from the Zn2TiO4 with a spinel structure (ZT-1000, ZT-cp) was easily regenerated even at 550 ℃, while the ZnS produced from the ZnO with a hexagonal structure (ZT-700) needed a temperature higher than 610 ℃. After regeneration, each sorbent was restored to its original crystal structure. The differences in the regeneration properties and the reaction cycles of the sorbents were related to the original crystal structures rather than to the physical properties such as pore volume and surface area. To study these differences further, FT-IR, FT-Raman, XRD and TPR were used, and their results including the reaction cycles of the sulfidation and regeneration on the Zn-Ti based sorbents with different crystal structures were discussed.
[References]
  1. Frey HC, Rubin ES, Environ. Sci. Technol., 26(10), 1982, 1992
  2. Bauer CO, Environ. Sci. Technol., 37(1), 27A, 2003
  3. Yun YS, Yoo YD, Chung SW, Fuel Process. Technol., 88(2), 107, 2007
  4. Zheng LG, Furinsky E, Energy Conv. Manag., 46(11-12), 1767, 2005
  5. Gasper-Galvin LD, Atimtay AT, Gupta RP, Ind. Eng. Chem. Res., 37(10), 4157, 1998
  6. Slimane RB, Abbasian J, Advances in Environ. Res., 4, 147, 2000
  7. Abad A, Adanez J, Garcia-Labiano F, de Diego LF, Gayan P, Energy Fuels, 18(5), 1543, 2004
  8. Lew S, Jothimurugesan K, Flytzani-Stephanopoulos M, Ind.Eng. Chem. Res., 28, 535, 1989
  9. Ko TH, Chu H, Lin HP, Peng CY, J. Hazard. Mater., 136(3), 776, 2006
  10. Sanchez-Hervas JM, Otero J, Ruiz E, Chem. Eng. Sci., 60(11), 2977, 2005
  11. Kyotani T, Kawashima H, Environ. Sci. Technol., 23(2), 218, 1989
  12. Garcia E, Palacios JM, Alonso L, Moliner R, Energy Fuels, 14(6), 1296, 2000
  13. Abbasian J, Slimane RB, Ind. Eng. Chem. Res., 37(7), 2775, 1998
  14. Zhang JC, Wang YH, Ma RY, Wu DY, Fuel Process. Technol., 84(1-3), 217, 2003
  15. Zhang JC, Wang YH, Wu DY, Energy Conv. Manag., 44(3), 357, 2003
  16. Alonso L, Palacios JM, Moliner R, Energy Fuels, 15(6), 1396, 2001
  17. Jung SY, Jun HK, Lee SJ, Lee TJ, Ryu CK, Kim JC, Environ. Sci. Technol., 39(23), 9324, 2005
  18. Ryu SO, Park NK, Chang CH, Kim JC, Lee TJ, Ind. Eng. Chem. Res., 43(6), 1466, 2004
  19. Jothimurugesan K, Gangwal SK, Energy & Fuel., 37(5), 1929, 1998
  20. Jun HK, Lee TJ, Ryu SO, Kim JC, Ind. Eng. Chem. Res., 40(16), 3547, 2001
  21. Jun HK, Koo JH, Lee TJ, Ryu SO, Yi CK, Ryu CK, Kim JC, Energy Fuels, 18(1), 41, 2004
  22. Jun HK, Jung SY, Lee TJ, Kim JC, Korean J. Chem. Eng., 21(2), 425, 2004
  23. Jun HK, Jung SY, Lee TJ, Ryu CK, Kim JC, Catal. Today, 87(1-4), 3, 2003
  24. Jun HK, Lee TJ, Kim JC, Ind. Eng. Chem. Res., 41(19), 4733, 2002
  25. Hatori M, Sasaoka E, Uddin MA, Ind. Eng. Chem. Res., 40(8), 1884, 2001
  26. Ibarra JV, Cilleruelo C, Garacia E, Pineda M, Palacios JM, Vibrational Spectroscopy., 16, 1, 1998
  27. Hauck J, Mika K, J. Solid State Chem., 138, 334, 1998
  28. Manik SK, Pradhan SK, Physica., E33, 69, 2006
  29. Li CF, Bando Y, Nakamura M, Kimizuka N, Kito H, Mater. Res. Bull., 35(3), 351, 2000
  30. Wang ZW, Saxena SK, Zha CS, Physical Review., B 66, 024103-1, 2002
  31. Yang Y, Sun XW, Tay BK, Wang JX, Dong ZL, Fan HM, Adv. Mater., 19(14), 1839, 2007
  32. Kang SC, Jun HK, Lee TJ, Ryu SO, Kim JC, Korean Chem. Eng. Res., 40, 289, 2002