Issue
Korean Journal of Chemical Engineering,
Vol.27, No.5, 1476-1482, 2010
Production and characterization of activated carbon derived from brewer’s yeast
Activated carbon (AC) was produced from brewer’s yeast with K2CO3 activation. The effects of K2CO3/yeast ratio and activation temperature on the yield and adsorption properties of the AC were investigated. The results indicate that the optimum conditions were as follows: ratio of K2CO3/yeast=2 and activation temperature 800 ℃. The AC produced under the optimum conditions has BET surface area of 1,603 m2/g, pore volume of 1.43 cm2/g and average pore diameter of 3.5 nm. Adsorption of phenol onto the AC was determined by batch test at solution pH of 7. The effects of contact time and initial phenol concentration were investigated. The adsorption process was found to follow pseudosecond-order kinetics. The rate of phenol adsorption onto the AC produced was rapid with the adsorption equilibrium reached within 5 min. The experimental data fitted well with the Langmuir isotherm model. The maximum phenol uptake by the AC was estimated to be 513.5 mg/g.
[References]
  1. Kalderis D, Bethanism S, Paraskeva P, Diamadopoulos E, Bioresour. Technol., 99, 6809, 2008
  2. Suhas, Carrott PJM, Carrott MMLR, Bioresour. Technol., 98(12), 2301, 2007
  3. Din ATM, Hameed BH, Ahmad AL, J. Hazard. Mater., 161(2-3), 1522, 2009
  4. Ip AWM, Barford JP, McKay G, Bioresour. Technol., 99, 8909, 2008
  5. Okada K, Yamamoto N, Kameshima Y, Yasumori A, J. Colloid Interface Sci., 262(1), 179, 2003
  6. Okada K, Yamamoto N, Kameshima Y, Yasumori A, J. Colloid Interface Sci., 262(1), 194, 2003
  7. Skodras G, Diamantopouiou I, Zabaniotou A, Stavropoulos G, Sakellaropoulos GP, Fuel Process. Technol., 88(8), 749, 2007
  8. Lopez G, Olazar M, Artetxe M, Amutio M, Elordi G, Bilbao J, J. Anal. Appl. Pyrolysis., 85, 2009
  9. Wang XN, Zhu NW, Yin BK, J. Hazard. Mater., 153(1-2), 22, 2008
  10. Koutcheiko S, Monreal CM, Kodama H, McCracken T, Kotlyar L, Bioresour. Technol., 98(13), 2459, 2007
  11. Lima IM, Marshal WE, Bioresour. Technol., 96(6), 699, 2005
  12. Hameed BH, Din ATM, Ahmad AL, J. Hazard. Mater., 141(3), 819, 2007
  13. Guo Y, Yu K, Wang Z, Xu H, Mater. Chem. Phys., 78, 132, 2002
  14. Kumar BGP, Shivakamy K, Miranda LR, Velan M, J. Hazard. Mater., 136(3), 922, 2006
  15. Adinata D, Daud WMAW, Aroua MK, Bioresour. Technol., 98(1), 145, 2007
  16. Namasivayam C, Sangeetha D, Chemosphere., 60, 1616, 2005
  17. Lamoolphak W, Goto M, Sasaki M, Suphantharika M, Wangnapoh C, Prommuag C, Shotipruk A, J. Hazard. Mater., 137(3), 1643, 2006
  18. Mudoga HL, Yucel H, Kincal NS, Bioresour. Technol., 99(9), 3528, 2008
  19. Suzuki RM, Andrade AD, Sousa JC, Rollemberg MC, Bioresour. Technol., 98(10), 1985, 2007
  20. Kim DJ, Yie JE, J. Colloid Interface Sci., 283(2), 311, 2005
  21. Onal Y, J. Hazard. Mater., 137(3), 1719, 2006
  22. Tan IAW, Hameed BH, Ahmad AL, Chem. Eng. J., 127(1-3), 111, 2007
  23. Yang XY, Al-Duri B, J. Colloid Interface Sci., 287(1), 25, 2005
  24. Haghseresht F, Lu GQ, Energy Fuels, 12(6), 1100, 1998
  25. Fytianos K, Voudrias E, Kokkalis E, Chemosphere., 40, 3, 2000
  26. Jia Q, Lua AC, J. Anal. Appl. Pyrolysis., 83(2), 175, 2008