Issue
Korean Journal of Chemical Engineering,
Vol.27, No.5, 1576-1580, 2010
Characterization of metal corrosion by aqueous amino acid salts for the capture of CO2
We investigated the absorption ability of potassium salts of amino acid solutions for carbon dioxide and compared the results with MEA. The corrosion and degradation behavior were investigated in a CO2 absorption process using aqueous potassium salts of glycine and taurine. The experimental parameters varied were the concentration, amino acid type, temperature, CO2 loading, piperazine, and the presence of corrosion inhibitors. The corrosion characteristics of carbon steel were measured with potassium glycinate and potassium taurate solutions over a wide range of concentrations (1.5 to 5.0 M) and temperatures (313.15 to 353.15 K). The corrosion rate was calculated using a weight loss method averaging the results of four specimens. The experimental results indicate that increases in the concentration of the aqueous amino acid salts, solution temperature, CO2 loading, and piperazine concentration accelerate the corrosion rate. In addition, corrosion inhibitors were proven to be effective in controlling corrosion.
[References]
  1. Portugal AF, Derks PWJ, Versteeg GE, Magalhaes FD, Mendes A, Chem. Eng. Sci., 62(23), 6534, 2007
  2. Lee S, Park JW, Song HJ, Maken S, Filburn T, Energy Policy, 36(1), 326, 2008
  3. Lee S, Song HJ, Maken S, Shin HC, Song HC, Park JW, J. Chem. Eng. Data., 51(2), 504, 2006
  4. Lee S, Choi S, Maken S, Song HJ, Shin HC, Park JW, J.Chem. Eng. Data., 50(5), 1773, 2005
  5. Kumar PS, Hogendoorn JA, Versteeg GF, Feron PHM, AIChE J., 49(1), 203, 2003
  6. Song HJ, Lee S, Maken S, Park JJ, Park JW, Fluid Phase Equilib., 246(1-2), 1, 2006
  7. Lee S, Song HJ, Maken S, Yoo SK, Park JW, Kim S, Shim JG, Jang KR, Korean J. Chem. Eng., 25(1), 1, 2008
  8. Van Holst J, Kersten SRA, Hogendoorn KJA, J. Chem.Eng. Data., 53(6), 1286, 2008
  9. Zhang J, Zhang S, Dong K, Zhang Y, Shen Y, Lv X, Chemistry - A European Journal., 12(15), 4021, 2006
  10. Kumar PS, Hogendoorn JA, Feron PHM, Versteeg GF, Ind. Eng. Chem. Res., 42(12), 2832, 2003
  11. Kumar PS, Hogendoorn JA, Timmer SJ, Feron PHM, Versteeg GF, Ind. Eng. Chem. Res., 42(12), 2841, 2003
  12. DuPart MS, Bacon TR, Edwards DJ, Hydrocarbon Processing., 72(5), 89, 1993
  13. Hawkes EN, Mago BF, Hydrocarbon Processing., 50(8), 109, 1971
  14. Lee S, Maken S, Park JW, Song HJ, Park JJ, Shim JG, Kim JH, Eum HM, Fuel., 87(8-9), 1734, 2008
  15. Veawab A, Tontiwachwuthikul P, Chakma A, Ind. Eng. Chem. Res., 38(1), 310, 1999
  16. Ma'mun S, Svendsen HF, Hoff KA, Juliussen O, Energy Conv. Manag., 48(1), 251, 2007
  17. Soosaiprakasam IR, Veawab A, International J. Greenhouse Gas Control., 2(4), 553, 2008
  18. Chemical Compositions of SAE Carbon Steels, http://www.kspipe. com/datacenter-6.htm.
  19. DuPart MS, Bacon TR, Edwards DJ, Hydrocarbon Processing., 72(4), 75, 1993
  20. Veawab A, Tontiwachwuthikul P, Chakma A, Ind. Eng. Chem. Res., 38(10), 3917, 1999
  21. Veawab A, Tontiwachwuthikul P, Bhole SD, Chem. Eng. Commun., 144, 65, 1996
  22. Veawab A, Tontiwachwuthikul P, Bhole SD, Ind. Eng. Chem. Res., 36(1), 264, 1997
  23. Austgen DM, Rochelle GT, Xiao P, Chen CC, Ind. Eng.Chem. Res., 28(7), 1060, 1989
  24. Lee S, Song HJ, Maken S, Park JW, Ind. Eng. Chem. Res., 46(5), 1578, 2007
  25. Nainar M, Veawab A, Energy Procedia., 1(1), 231, 2009
  26. Cullinane JT, Rochelle GT, Chem. Eng. Sci., 59(17), 3619, 2004
  27. Rob L, The promoter effect of piperazine on the removal of carbon dioxide, 7th January, 2004
  28. Oexmann J, Hensel C, Kather A, International J. Greenhouse Gas Control., 2(4), 539, 2008
  29. Veawab A, Tontiwachwuthikul P, Chakma A, Ind. Eng. Chem. Res., 40(22), 4771, 2001