Issue
Korean Journal of Chemical Engineering,
Vol.27, No.5, 1419-1422, 2010
Dibenzothiophene hydrodesulfurization over MoP/SiO2 catalyst prepared with sol-gel method
Silica-supported molybdenum phosphide, MoP/SiO2 catalysts with different Mo weight loadings were prepared by temperature programmed reduction of the oxidic catalyst precursors, which were prepared via sol-gel technique using ethyl silicate-40 as silica source. Samples were characterized by X-ray diffraction (XRD), scanning electron microscopy (SEM), BET surface area measurements, and their catalytic activity in hydrodesulfurization (HDS) was tested with dibenzothiophene (DBT) as model compound. XRD analysis revealed the amorphous nature of the catalyst up to 10 wt% Mo loading and the formation of crystalline MoP phase on amorphous silica support with higher Mo loading. BET surface area showed high surface area for catalysts prepared by sol-gel technique with lower Mo content, and the surface area decreased with increasing in Mo loading. The HDS results showed that prepared MoP/SiO2 exhibited high HDS activity and stability toward the catalytic test. Among the series of catalysts prepared, MoP/SiO2 containing 20 wt% Mo was found to be the most active catalyst. And the effects of reaction temperature and hydrogen pressure on conversion and product selectivity were investigated.