Issue
Korean Journal of Chemical Engineering,
Vol.27, No.3, 836-842, 2010
Evaluation of direct formic acid fuel cells with catalyst layers coated by electrospray
We investigated cell performance and performed phenomenological analyses of direct formic acid fuel cells (DFAFCs) incorporating anode (palladium) and cathode (platinum) catalysts prepared using a new electrospray coating technique. To optimize the design of the DFAFC, we examined the cell performance by the Pd catalyst loading and formic acid feed rate. Of Pd catalyst loaded samples, 3 mg/cm2 sample showed the highest electrical performance with formic acid feed rate of 5 ml/min. This behavior was caused by discrepancies in the mass transfer limitation. When the feed rate was greater than 10 mL/min, however, the 7 mg/cm2 sample provided the highest electrical performance, which was attributed to enhanced electrooxidation reactions. For comparison of the effect of the catalyst coating method on the cell performance of DFAFC, polarization curves of the DFAFC incorporating catalysts prepared using a conventional airspray coating method were also measured. As a result of the comparison, the electrospray coatingused DFAFC showed better cell performance. Based on these results, the cell performance of the DFAFCs was optimized when the catalysts using the electrospray catalyst coating were employed, the amount of Pd loaded on the anode electrode was 3 mg/cm2 (Pd thickness: ~6 μm), and the formic acid feed rate was 10 mL/min.
[References]
  1. Rice C, Ha RI, Masel RI, Waszczuk P, Wieckowski A, Barnard T, J. Power Sources, 111(1), 83, 2002
  2. Yu XW, Pickup PG, J. Power Sources, 182(1), 124, 2008
  3. Zhu YM, Ha SY, Masel RI, J. Power Sources, 130(1-2), 8, 2004
  4. Neergat M, Seiler T, Savinova ER, Stimming U, J. Electrochem. Soc., 153(6), A997, 2006
  5. Piela P, Fields R, Zelenay P, J. Electrochem. Soc., 153(10), A1902, 2006
  6. Ren X, Springer TE, Gottesfeld S, J. Electrochem. Soc., 147(1), 92, 2000
  7. Choi JH, Park KW, Park IS, Kim K, Lee JS, Sung YE, J. Electrochem. Soc., 153(10), A1812, 2006
  8. Oetjen HF, Schmidt VM, Stimming U, Trila F, J. Electrochem. Soc., 143(12), 3838, 1996
  9. Demirci UB, J. Power Sources, 169(2), 239, 2007
  10. Acres GJK, J. Power Sources, 100(1-2), 60, 2001
  11. Gamburzev S, Appleby AJ, J. Power Sources, 107(1), 5, 2002
  12. Ha S, Rice CA, Masel RI, Wieckowski A, J. Power Sources, 112(2), 655, 2002
  13. Jung WS, Han JH, Ha S, J. Power Sources, 173(1), 53, 2007
  14. Ha S, Larsen R, Masel RI, J. Power Sources, 144(1), 28, 2005
  15. Misse CM, Jung WS, Jeong KJ, Lee JK, Lee J, Han JH, Yoon SP, Nam SW, Lim TH, Hong SA, J. Power Sources, 162, 532, 2005
  16. Chu KL, Shannon MA, Masel RI, J. Electrochem. Soc., 153(8), A1562, 2006
  17. Xia X, Iwasita TJ, J. Electrochem. Soc., 140, 2559, 1993
  18. Yang H, Zhao TS, Electrochim. Acta, 50, 3243, 2004
  19. Qiao H, Shiroishi H, Okada T, Electrochim. Acta, 53(1), 59, 2007
  20. Hsing IM, Wang X, Leng YJ, J. Electrochem. Soc., 149(5), A615, 2002
  21. Jiang RC, Kunz HR, Fenton JM, J. Electrochem. Soc., 152(7), A1329, 2005
  22. Ha S, Dunbar Z, Masel RI, J. Power Sources, 130, 129, 2003
  23. Larsen R, Ha S, Zakzeski J, Masel RI, J. Power Sources, 157(1), 78, 2006
  24. O’Hayre R, Cha SW, Colalla W, Frinz FB, Fuel cell fundamentals, Wiley, New York, 145, 2006
  25. Zhu YM, Khan Z, Masel RI, J. Power Sources, 139(1-2), 15, 2005
  26. Benitez R, Soler J, Daza L, J. Power Sources, 151, 108, 2005
  27. Baturina OA, Wnek GE, Electrochem. Solid State Lett., 8(6), A267, 2005
  28. Li GC, Pickup PG, J. Electrochem. Soc., 150(11), C745, 2003
  29. Choi HJ, Kim J, Kwon Y, Han J, J. Power Sources, 195(1), 160, 2010
  30. Xie Z, Navessin T, Shi K, Chow R, Wang QP, Song DT, Andreaus B, Eikerling M, Liu ZS, Holdcroft S, J. Electrochem. Soc., 152(6), A1171, 2005
  31. Choi JH, Jeong KJ, Dong Y, Han J, Lim TH, Lee JS, Sung YE, J. Power Sources, 163(1), 71, 2006
  32. Lukaszewski M, Kusmierczyk K, Kotowski J, Siwek H, Czerwinski A, J. Solid State Electrochem., 7, 69, 2003