Issue
Korean Journal of Chemical Engineering,
Vol.27, No.2, 536-545, 2010
A modelling study on hydrolysis of whey lactose and stability of β-galactosidase
In the present study, the effect of process conditions on whey lactose hydrolysis and enzyme inactivation were investigated. The experiments were carried out in 250 mL of 25 mM phosphate buffer solution by using β-galactosidase produced from Kluyveromyces marxianus lactis in a batch reactor system. The degree of lactose hydrolysis (%) and residual enzyme activity (%) against time were investigated versus lactose concentration, enzyme concentration, temperature and pH. The mathematical models were derived from the experimental data to show the effect of process conditions on lactose hydrolysis and residual enzyme activity (in the presence and absence of lactose). At the optimum process conditions obtained (50 g/L of lactose concentration, 1 mL/L of enzyme concentration, 37 ℃ of temperature and pH 6.5), 81% of lactose was hydrolyzed and enzyme lost its activity by 32%. The activation energy for hydrolysis reaction (EA) and the enzymatic inactivation energy (ED) were calculated as 52.7 kJ/mol and 96.7 kJ/mol. Mathematical models at various process conditions have been confirmed with the experimental results.
[References]
  1. Pessela BCC, Mateo C, Fuentes M, Vian A, Garcia JL, Carrascosa AV, Guisan JM, Fernandez-Lafuente R, Enzyme Microb. Technol., 33(2-3), 199, 2003
  2. Curcio S, Calabro V, Iorio G, J. Membr. Sci., 273(1-2), 129, 2006
  3. Tanriseven A, Dogan S, Process Biochem., 38, 27, 2002
  4. Ladero M, Santos A, Garcia JL, Carrascosa AV, Pessela BCC, Garcia-Ochoa F, Enzyme Microb. Technol., 30(3), 392, 2002
  5. Santos A, Ladero M, Garcia-Ochoa F, Enzyme Microb. Technol., 22(7), 558, 1998
  6. Novalin S, Neuhaus W, Kulbe KD, J. Biotechnol., 119, 212, 2005
  7. Szczodrak J, J. Mol. Catal. B-Enzym, 10, 631, 2000
  8. Al-Muftah AE, Abu-Reesh IM, Biochem. Eng. J., 27, 167, 2005
  9. Burin L, Jouppila K, Roos YH, Kansikas J, Buera MP, Int. Dairy J., 14, 517, 2004
  10. Kim JI, Choi DY, Row KH, Korean J. Chem. Eng., 20(3), 538, 2003
  11. Jurado E, Camacho F, Luzon G, Vicaria JM, Enzyme Microb. Technol., 31(3), 300, 2002
  12. Roy I, Gupta MN, Process Biochem., 39, 325, 2003
  13. Ladero M, Santos A, Garcia JL, Garcia-Ochoa F, Enzyme Microb. Technol., 29(2-3), 181, 2001
  14. Ladero M, Santos A, Garcia-Ochoa F, Enzyme Microb. Technol., 27(8), 583, 2000
  15. Vasiljevic T, Jelen P, Innov. Food Sci. Emerg. Technol., 3, 175, 2002
  16. Carrara CR, Rubiolo AC, Chem. Eng. J., 65, 93, 1997
  17. Papayannakos N, Markas G, Kekos D, Chem. Eng. J., 52, B1, 1993
  18. Yang ST, Okos MR, Biotechnol. Bioeng., 33, 873, 1989
  19. Nielsen DA, Chou J, MacKrell AJ, Casadaban MJ, Steiner DF, Proc. Natl. Acad. Sci. USA, 80, 5198, 1983
  20. Craven GR, Steers EJ, Anfinsen CB, J. Biol. Chem., 240, 2468, 1965
  21. Mariotti MP, Yamanaka H, Araujo AR, Trevisan HC, Braz. Arch. Biol. Technol., 51, 1233, 2008
  22. Li XM, Zhou QZK, Chen XD, Chem. Eng. Process., 46(5), 497, 2007
  23. Bergmeyer HU, Bernt E, In determination with glucose oxidase and peroxsidase, In: Bergmeyer HU, editor, Methods of enzymatic analysis, 2nd ed., Academic Press, New York, 1974
  24. Toscano G, Pirozzi D, Maremonti M, Greco G, Biotechnol. Bioeng., 44(6), 682, 1994
  25. Sadana A, Henley JM, Biotechnol. Bioeng., 30, 717, 1987
  26. Di Serio M, Maturo C, De Alteriis E, Parascandola P, Tesser R, Santacesaria E, Catal. Today, 79-80, 333, 2003
  27. Haider T, Husian Q, J. Sci. Food Agr., 87, 1278, 2007
  28. Haider T, Husain Q, Chem. Eng. Process., 48(1), 576, 2009
  29. Sener N, Apar DK, Ozbek B, Process Biochem., 41, 1498, 2006