Issue
Korean Journal of Chemical Engineering,
Vol.27, No.2, 551-559, 2010
Effects of nitrogen source and carbon/nitrogen ratio on batch fermentation of glutathione by Candida utilis
Several inorganic/organic N-containing substances were tested as nitrogen source for efficient glutathione production by C. utilis WSH 02-08. Although the strain could assimilate all the inorganic/organic nitrogen, urea and ammonium sulfate were found more favorable to cell growth and glutathione biosynthesis in a flask, respectively, and an optimal C/N ratio existed for each as 5.6 mol/mol and 8.3 mol/mol. A mixed nitrogen source of urea and ammonium under diverse C/N ratios could not boost glutathione fermentation despite the many mixed strategies that were introduced. Batch glutathione production in a stirred fermentor, using the sole or mixed nitrogen sources of urea and ammonium sulfate under their optimal C/N ratios, were conducted; urea was further proved to be the best nitrogen source for glutathione production. The reason was then quantitatively described by kinetic model, together with the distribution of flux for metabolites in metabolic network of glutathione biosynthesis by C. utilis WSH 02-08.
[References]
  1. Meister A, Anderson ME, Annu. Rev. Biochem., 52, 711, 1983
  2. Yamauchi A, Tsuyuki S, Inamoto T, Yamaoka Y, Antioxid. Redox Sign., 1, 245, 1999
  3. Pastore A, Federici G, Bertini E, Piemonte F, Clin. Chim. Acta, 333, 19, 2003
  4. Sies H, Free Rad. Bio. Med., 27, 916, 1999
  5. Lafleur MV, Hoorweg JJ, Joenje H, Westmijze EJ, Retel J, Free Radical Res., 21, 9, 1994
  6. Sen CK, J. Nutr. Biochem., 8, 660, 1997
  7. Villarama CD, Maibach HI, Int. J. Cosmetic Sci., 27, 147, 2005
  8. Li Y, Wei GY, Chen J, Appl. Microbiol. Biotechnol., 66(3), 233, 2004
  9. van Urk H, Voll WSL, Sheffers WA, van Dijken JP, Appl. Environ. Microbiol., 56, 281, 1990
  10. Castrillo JI, Kaliterna J, Weusthuis RA, Vandijken JP, Pronk JT, Biotechnol. Bioeng., 49(6), 621, 1996
  11. Jeffries TW, Jin YS, Appl. Microbiol. Biotechnol., 63(5), 495, 2004
  12. Wen SH, Zhang T, Tan TW, Enzyme Microb. Technol., 35(6-7), 501, 2004
  13. Wei GY, Wang DH, Chen J, Biotechnol. Bioprocess Eng., 13, 347, 2008
  14. KHAN JA, ABULNAJA KO, KUMOSANI TA, ABOUZAID AZA, Bioresour. Technol., 53(1), 63, 1995
  15. Devine ST, Slaughter TC, FEMS Microbiol. Lett., 9, 19, 1980
  16. Tietze F, Anal. Biochem., 27, 502, 1969
  17. Li Y, Chen J, Liang DF, Lun SY, J. Biotechnol., 81, 27, 2000
  18. Wei GY, Li Y, Du GC, Chen J, J. Chem. Ind. Eng. (China), 57, 1410, 2006
  19. Nielsen J, Biotechnol. Bioeng., 58(2-3), 125, 1998
  20. Lee ES, Park JY, Yeom SH, Yoo YJ, Korean J. Chem. Eng., 25(1), 139, 2008
  21. Thomas KC, Hynes SH, Ingledew WM, Biotechnol. Lett., 18(10), 1165, 1996
  22. Wei GY, Wang DH, Chen J, J. Chem. Ind. Eng. (China), 58, 2329, 2007
  23. Jr. Gaden EL, J. Biochem. Microbiol. Technol. Eng., 1, 413, 1959