Issue
Korean Journal of Chemical Engineering,
Vol.27, No.2, 480-486, 2010
Suppression of carbon formation in steam reforming of methane by addition of Co into Ni/ZrO2 catalysts
We investigated the steam reforming of methane (SRM) over various NiCo bimetallic catalysts supported on ZrO2 to determine whether the addition of Co on the Ni catalyst suppressed carbon formation. The effect of metal loading on SRM reaction was evaluated in a downflow tubular fixed-bed reactor under various steam-to-carbon (S/C) ratios and temperatures. For monitoring changes in the catalysts before and after the SRM reactions, several techniques (BET, XRD, TEM, and CHN analysis) were used. The effects of reaction temperature, gas hourly space velocity (GHSV), and molar S/C ratios were studied in detail over the various catalyst combinations. It was found that an Nito-Co ratio of 50 : 50 supported on ZrO2 provided the best catalytic activity, along with an absence of coking, when operated at a temperature of 1,073 K, a GHSV of 24 L g^(-1)h^(-1), and an S/C ratio of 3 : 1.
[References]
  1. Hou KH, Hughes R, Chem. Eng. J., 82(1-3), 311, 2001
  2. Choudhary VR, Banerjee S, Rajput AM, Appl. Catal. A: Gen., 234(1-2), 259, 2002
  3. Matsumura Y, Nakamori T, Appl. Catal. A: Gen., 258(1), 107, 2004
  4. Song CS, Catal. Today, 77(1-2), 17, 2002
  5. Rostrup-Nielsen JR, Sehested J, Norskov JK, Adv. Catal., 47, 65, 2002
  6. Bengaard HS, Norskov JK, Sehested J, Clausen BS, Nielsen LP, Molenbroek AM, Rostrup-Nielsen JR, J. Catal., 209(2), 365, 2002
  7. Rostrup-Nielsen JR, Anderson JR, Boudart M, Catalysis Science and Technology, Springer-Verlag, Berlin, 1984
  8. Trimm DL, Catal. Today, 37(3), 233, 1997
  9. Rostrup-Nielsen JR, J. Catal., 33, 184, 1974
  10. Forzatti P, Lietti L, Catal. Today, 52(2-3), 165, 1999
  11. Bartholomew CH, Appl. Catal. A, 212, 17, 2001
  12. Trimm DL, Catal. Today, 49(1-3), 3, 1999
  13. Tang S, Lin J, Tan KL, Catal. Lett., 59(2-4), 129, 1999
  14. Wu T, Yan Q, Mao F, Niu Z, Zhang Q, Li Z, Wan H, Catal. Today, 93, 121, 2004
  15. Albertazzi S, Arpentinier P, Basile F, Del Gallo P, Fornasari G, Gary D, Vaccari A, Appl. Catal. A, 247, 1, 2004
  16. Takanabe K, Nagaoka K, Nariai K, Aika K, J. Catal., 230(1), 75, 2005
  17. Ruckenstein E, Wang HY, J. Catal., 205(2), 289, 2002
  18. Choudhary VR, Rajput AM, Prabhakar B, Mamman AS, Fuel, 77(15), 1803, 1998
  19. Koh ACW, Chen L, Leong WK, Johnson BFG, Khimyak T, Lin J, Int. J. Hydrogen Energy, 32, 725, 2007
  20. Hu X, Lu GX, J. Mol. Catal. A-Chem., 261(1), 43, 2007
  21. Hardiman KM, Ying TT, Adesina AA, Kennedy EM, Dlugogorski BZ, Chem. Eng. J., 102(2), 119, 2004
  22. Hardiman KA, Hsu CH, Ying TT, Adesina AA, J. Mol. Catal. A-Chem., 239(1-2), 41, 2005
  23. Takanabe K, Nagaoka K, Nariai K, Aika K, J. Catal., 232(2), 268, 2005
  24. Choudhary VR, Mamman AS, J. Chem. Technol. Biotechnol., 73(4), 345, 1998
  25. Reddy BM, Reddy GK, Rao KN, Khan A, Ganesh I, J. Mol. Catal. A, 265, 276, 2006
  26. Lucredio AF, Assaf EM, J. Power Sources, 159(1), 667, 2006
  27. Provendier H, Petit C, Kiennemann A, Chemistry, 4, 57, 2001
  28. Klug HP, Alexander LE, X-ray diffraction procedures, 2nd Ed., John Wiley & Sons Inc., U.S.A., 1974