Issue
Korean Journal of Chemical Engineering,
Vol.27, No.2, 459-464, 2010
Removal of sulfur dioxide from dibenzothiophene sulfone over Mg-based oxide catalysts prepared by spray pyrolysis
Spray pyrolysis was used to prepare catalysts containing magnesium with mesopores. MgO-SiO2, MgOAl2O3, and MgO-SiO2-Al2O3 catalysts were synthesized using cetyltrimethylammonium bromide (CTAB) as a templating agent. The characteristics of the catalysts were examined by N2 adsorption, XRD, XRF and the temperature-programmed desorption of carbon dioxide. The MgO-SiO2 catalyst has well-developed mesopores, a large surface area and well dispersed magnesium oxide. The basic sites on the MgO-SiO2 catalyst were much stronger than those on the MgO-SiO2-Al2O3 and MgO-Al2O3 catalysts. The catalytic performance for the decomposition of dibenzothiophene sulfone (DBTS) to biphenyl and sulfur dioxide gas was examined in a fixed-bed reactor. The MgO-SiO2 catalyst has the highest activity in the cracking of DBTS, which was attributed to the strong basicity due to the dispersed effect of magnesium oxide. Compared to the MgO catalyst, the mesoporous MgO-SiO2 solid base can improve significantly the catalytic efficiency for the removal of sulfur dioxide from dibenzothiophene sulfone.
[References]
  1. Corma A, Chem. Rev., 97(6), 2373, 1997
  2. Rao GVR, Lopez GP, Bravo J, Pham H, Datye AK, Xu HF, Ward TL, Adv. Mater., 14(18), 1301, 2002
  3. Nooney RI, Dhanasekaran T, Chem Y, Josephs R, Ostafin AE, Chem. Mater., 14, 4721, 2002
  4. Chung JS, Kim DJ, Ahn WS, Ko JH, Cheong WJ, Korean J. Chem. Eng., 21(1), 132, 2004
  5. Roh HS, Chang JS, Park SE, Korean J. Chem. Eng., 16(3), 331, 1999
  6. Lu Y, Fan H, Stump A, Ward TL, Rieker T, Brinker CJ, Nature, 398, 223, 1999
  7. Bore MT, Rathod SB, Ward TL, Datye AK, Langmuir, 19(2), 256, 2003
  8. Fan H, Swol FV, Lu Y, Brinker CJ, J. Non-Crystal. Solids, 258, 71, 2001
  9. Hampsey JE, Arsenault S, Hu Q, Lu Y, Chem. Mater., 17, 2475, 2005
  10. Jung KY, Kang YC, Park YK, J. Ind. Eng. Chem., 14(2), 224, 2008
  11. Jung KY, Lee HW, J. Lumin., 126, 469, 2007
  12. Gurav A, Kodas TT, Pluym T, Xiong Y, Aerosol Sci. & Tech., 19, 411, 1993
  13. Ortega J, Kodas TT, J. Aerosol Sci., 23, 253, 1992
  14. Baek CM, Jung KY, Park KY, Park SB, Cho SB, Korean Chem. Eng. Res., 46(5), 880, 2008
  15. Kim JH, Jung KY, Park KY, Cho SB, Micropor. Mesopor. Mater., In press, 2009
  16. Lee KK, Kang YC, Jung KY, Kim JH, J. Alloys Compd., 395, 280, 2005
  17. Jung DS, Hong SK, Lee HJ, Kang YC, J. Alloys Compd., 398, 309, 2005
  18. Chica A, Corma A, Domine ME, J. Catal., 242(2), 299, 2006
  19. Ono Y, Baba T, Catal. Today, 38(3), 321, 1997
  20. Hur JM, Park KI, Lee HI, J. Korean Ind. Ing. Chem., 11, 563, 2000
  21. Kang MR, Lim HM, Lee SC, Lee SH, Kim KJ, J. Materials Online, 6, 218, 2004
  22. Kocal JA, Brandvold TA, US Patent 6,368,495, 2002
  23. Wu G, Wang X, Zhao N, Wei W, Sun Y, Proc. 15th International Zeolite Conference, Beijing, 12-17 Aug., 1123, 2007
  24. You N, Kim MJ, Jeong KE, Jeong SY, Park YK, Jeon JK, J. Nanosci. Nanotech., In press, 2010
  25. Hattori H, Chem. Rev., 95(3), 537, 1995
  26. Umdu ES, Tuncer M, Seker E, Bioresource Technol., 100, 2828, 2009
  27. Seker E, International J. Hydrogen Energy, 33, 2044, 2008
  28. Liu S, Zhang X, Li J, Zhao N, Wei W, Sun Y, Catal. Comm., 9, 1527, 2008