Issue
Korean Journal of Chemical Engineering,
Vol.27, No.2, 596-601, 2010
Transfer rate measurement of lysozyme by liquid-liquid extraction using reverse micelles with dense CO2
Lysozyme was extracted from aqueous solution into i-octane using reverse micelles in the presence of pressurized CO2. A squat vessel with two independent stirrers was used to measure the mass transfer of the lysozyme across a planar interface. Mass transfer coefficient, k(L) of the lysozyme from the aqueous to the organic phase was measured at selected ionic strengths, pH, sodium bis(2-ethylhexyl) sulfosuccinate (AOT) surfactant concentrations, temperatures and pressurized CO2. The mass transfer rate of lysozyme was higher in high temperature (318 K) and pressure (20MPa). pH of 9 in aqueous phase showed highest mass transfer rate of lysozyme. The application of pressurized CO2 markedly increased the mass transfer rate of lysozyme comparing to conventional non-pressurized system.
[References]
  1. Pires MJ, Airesbarros MR, Cabral JM, Biotechnol. Prog., 12(3), 290, 1996
  2. Lu Q, Chen H, Li K, Shi Y, Biochem. Eng. J., 1, 45, 1998
  3. Nagayama K, Matsuura S, Doi T, Imai M, J. Mol. Cat. B, 4, 25, 1998
  4. Lye GJ, Asenjo JA, Pyle DL, AIChE J., 42(3), 713, 1996
  5. Nishiki T, Sato I, Muto A, Kataoka T, Biochem. Eng. J., 1, 91, 1998
  6. Dekker M, Van’t Riet K, Bijsterbosch BH, Fijneman P, Hilhorst R, Chem. Eng. Sci., 45, 2949, 1990
  7. Dungan SR, Bausch T, Hatton TA, Plucinski P, Nitsch W, J. Colloid Interface Sci., 145, 33, 1991
  8. Lye GJ, Asenjo JA, Pyle DL, Chem. Eng. Sci., 49(19), 3195, 1994
  9. Jarudilokkul S, Paulsen E, Stuckey DC, Bioseparation, 9, 81, 2000
  10. Zhang HF, Lu J, Han BX, J. Supercrit. Fluids, 20(1), 65, 2001
  11. Housaindokht MR, Haghighi B, Bozorgmehr MR, Korean J. Chem. Eng., 24(1), 102, 2007
  12. Lewis JB, Chem. Eng. Sci., 3, 248, 1954
  13. Lowry OH, Rosebrough NJ, Farr AW, Randall RJ, J. Biol. Chem., 193, 265, 1951
  14. Nishiki T, Sato I, Muto A, Kataoka T, Biochem. Eng. J., 1, 91, 1998
  15. Nishii Y, Nii S, Takahashi K, Takeuchi H, J. Chem. Eng. Jpn., 32(2), 211, 1999
  16. Chun BS, Wilkinson GT, Sep. Sci. Technol., 37(14), 3323, 2002
  17. Yoon HH, Korean J. Biotechnol. Bioeng., 5, 411, 1990
  18. Kinugasa T, Tanahashi SI, Takeuchi H, Ind. Eng. Chem. Res., 30, 2470, 1991
  19. Lye GJ, Asenjo JA, Pyle DL, in Separation Biotechnology, Volume 3, Pyle DL, Ed., Royal Society of Chemistry, UK, 1994
  20. Kim H, Baek K, Kim BK, Shin HJ, Yang JW, Korean J. Chem. Eng., 25(2), 253, 2008
  21. Chun BS, Wilkinson GT, Ind. Eng. Chem. Res., 34(12), 4371, 1995
  22. Asai S, Hatanaka J, Uekawa Y, J. Chem. Eng. Jpn., 16, 463, 1963
  23. Park SW, Chun BS, Lim GT, Korean Chem. Eng. Res., 28, 594, 1990
  24. Schneider GM, in Supercritical Fluids Fundamentals for Application, Kiran E, Sengers JMHL, Eds., Kluwer Academic Publishers, Boston, USA, 1994