Issue
Korean Journal of Chemical Engineering,
Vol.27, No.2, 416-421, 2010
Scaling behavior of a wormlike polyelectrolyte chain by mesoscopic Brownian dynamics simulations
The scaling prediction of semiflexible wormlike chain was examined by applying Brownian dynamics simulation, which goes beyond other simulations as they do not consider both the hydrodynamic interaction between pairs of beads and long-range screening effect. The rheological behavior of the intrinsic viscosity was properly implemented by combining with optimized model parameters for the polyelectrolyte xanthan, and the validity of the simulation was previously confirmed. Scaling plots present that the structure and diffusion of polyelectrolyte chains depend sensitively on the Debye screening effect. In the scaling of end-to-end distance R(E), radius of gyration R(G), and translational diffusivity D(T) with respect to the number of beads N(b), the Flory-Edwards exponent ν was estimated as up to 1.0, which should be a really higher level compared to the case of the flexible neutral chains with self-avoiding walk in good solvent. Unlike the case of spherically averaged structure factor, scaling plots in that parallel to the first principal axis of gyration could not clearly be identified with a well defined exponent. With increasing screening effect, pronounced oscillations observed in the case of lower screening tend to smear out.
[References]
  1. Kremer K, Binder K, Comput. Phys. Rep., 7, 259, 1988
  2. Hoagland DA, Muthukumar M, Macromolecules, 25, 6696, 1992
  3. Holm C, Kekicheff P, Podgornik R, Eds., Electrostatic effects in soft matter and biophysics, Vol. 46, NATO Science Series II: Mathematics, Physics and Chemistry, Kluwer, Dordrecht, 2001
  4. Dobrynin AV, Rubinstein M, Prog. Polym. Sci., 30, 1049, 2005
  5. Daoud M, de Gennes PG, J. Phys. France, 38, 85, 1977
  6. Doi M, Edwards SF, The theory of polymer dynamics, Clarendon, Oxford, 1986
  7. Li B, Madras N, Sokal AD, J. Stat. Phys., 80, 661, 1995
  8. Smith DE, Perkins TT, Chu S, Macromolecules, 29(4), 1372, 1996
  9. Flory PJ, Principles of polymer chemistry, Cornell Univ. Press, NY, 1953
  10. Odijk T, J. Polym. Sci.: Polym. Phys. Ed., 15, 477, 1977
  11. van Vliet JH, ten Brinke G, J. Chem. Phys., 93, 1436, 1990
  12. Balducci A, Mao P, Han JY, Doyle PS, Macromolecules, 39(18), 6273, 2006
  13. Ottinger HC, Stochastic processes in polymeric fluids: Tools and examples for developing simulation algorithms, Springer, Heidelberg, 1996
  14. Jian HA, Vologodskii V, Schlick T, J. Comput. Phys., 136, 168, 1997
  15. Hur JS, Shaqfeh ESG, Larson RG, J. Rheol., 44(4), 713, 2000
  16. Jendrejack RM, Schwartz DC, Graham MD, de Pablo JJ, J. Chem. Phys., 119(2), 1165, 2003
  17. Jendrejack RM, Schwartz DC, de Pablo JJ, Graham MD, J. Chem. Phys., 120(5), 2513, 2004
  18. Chen YL, Graham MD, de Pablo JJ, Randall GC, Gupta M, Doyle PS, Phys. Rev. E, 70, 060901R, 2004
  19. Jeon J, Chun MS, J. Chem. Phys., 126, 154904, 2007
  20. Paradossi G, Brant DA, Macromolecules, 15, 874, 1982
  21. Sato T, Norisuye T, Fujita H, Macromolecules, 17, 2696, 1984
  22. Chun MS, Kim C, Lee DE, Phys. Rev. E, 79, 051919, 2009
  23. Dunweg B, Kremer K, J. Chem. Phys., 99, 6983, 1993
  24. Micka U, Kremer K, Phys. Rev. E, 54, 2653, 1996
  25. Lin PK, Fu CC, Chen YL, Chen YR, Wei PK, Kuan CH, Fann WS, Phys. Rev. E, 76, 011806, 2007
  26. Ermak DL, McCammon JA, J. Chem. Phys., 69, 1352, 1978
  27. Rotne J, Prager S, J. Chem. Phys., 50, 4831, 1969
  28. Warner HR, Ind. Eng. Chem. Fund., 11, 379, 1972
  29. Chun MS, Park OO, Macromol. Chem. Phys., 195, 701, 1994
  30. Stokke BT, Elgsaeter A, Skjak-Brjek G, Smidsrød O, Carbohydr. Res., 160, 13, 1987
  31. Rochefort WE, Middleman S, J. Rheol., 31, 337, 1987
  32. Manning GS, J. Chem. Phys., 51, 924, 1969
  33. Dhar A, Chaudhuri D, Phys. Rev. Lett., 89, 065502, 2002