Issue
Korean Journal of Chemical Engineering,
Vol.27, No.2, 624-631, 2010
Removal of sulfur compounds in FCC raw C4 using activated carbon impregnated with CuCl and PdCl2
Fluid catalytic cracking (FCC) is one of the most important refinery processes for economical efficiency that produces commercial fuels with acceptable concentrations of sulfur. Several activated carbon (AC) based adsorbents were studied to develop a more efficient adsorbent for removal of mercaptanes and sulfides during the FCC C4 refinery process. The adsorbents were prepared by impregnating AC with CuCl and PdCl2. To evaluate the degree of metal halide impregnation into the AC support, each adsorbent was characterized by N2 adsorption, elemental analysis (EA) and XRF. Three types of ACs were used to investigate the effect of the structural properties such as surface area, total pore volume and pore size distribution. From this analysis, an AC micro pore size of 0.7 nm was found to be the most effective support material for FCC C4 removal of sulfur compounds. The experimental adsorption isotherms were compared with Langmuir and Freundlich models and were found to fit the Freundlich model much better than the Langmuir model. The sulfur removal performance of the prepared adsorbents was tested using the breakthrough experiments. The sulfur adsorption capacities of adsorbents decreased in the following order: AC impregnated PdCl2, AC impregnated CuCl and non-impregnated AC (NIAC). The saturated adsorbents were regenerated by toluene treatment and reactivated at 130 ℃ under a vacuum.
[References]
  1. Knudsen KG, Cooper BH, Topsoe H, Appl. Catal. A: Gen., 189(2), 205, 1999
  2. Choi KH, Sano Y, Korai Y, Mochida I, Appl. Catal. B: Environ., 53(4), 275, 2004
  3. Song CS, Catal. Today, 86(1-4), 211, 2003
  4. Babich IV, Moulijn JA, Fuel, 82, 607, 2003
  5. Ma XL, Sun L, Song CS, Catal. Today, 77(1-2), 107, 2002
  6. Hernandez-Maldonado AJ, Yang RT, Ind. Eng. Chem. Res., 42(1), 123, 2003
  7. Hernandez-Maldonado AJ, Yang RT, Ind. Eng. Chem. Res., 42(13), 3103, 2003
  8. Hernandez-Maldonado AJ, Yang RT, AIChE J., 50(4), 791, 2004
  9. Hernandez-Maldonado AJ, Yang RT, Ind. Eng. Chem. Res., 43(4), 1081, 2004
  10. Hernandez-Maldonado AJ, Stamatis SD, Yang RT, He AZ, Cannella W, Ind. Eng. Chem. Res., 43(3), 769, 2004
  11. Haji S, Erkey C, Ind. Eng. Chem. Res., 42(26), 6933, 2003
  12. Jeevanandam P, Klabunde KJ, Tetzler SH, Microporous Mesoporous Mat., 79, 101, 2005
  13. Bakr A, Salem SH, Ind. Eng. Chem. Res., 33(2), 336, 1994
  14. Salem ABSH, Hamid HS, Chem. Eng. Technol., 20(5), 342, 1997
  15. Ng FTT, Rahman A, Ohasi T, Jiang M, Appl. Catal. B: Environ., 56(1-2), 127, 2005
  16. Hernandez-Maldonado AJ, Yang RT, AIChE J., 50(4), 791, 2004
  17. Xue M, Chitrakar R, Sakane K, Hirotsu T, Ooi K, Yoshimura Y, Feng Q, Sumida N, J. Colloid Interface Sci., 285(2), 487, 2005
  18. Velu S, Ma XL, Song CS, Ind. Eng. Chem. Res., 42(21), 5293, 2003
  19. Jiang ZX, Liu Y, Sun XP, Tian FP, Sun FX, Liang CH, You WS, Han CR, Li C, Langmuir, 19(3), 731, 2003
  20. Zhou AN, Ma XL, Song CS, J. Phys. Chem. B, 110(10), 4699, 2006
  21. Kim JH, Ma XL, Zhou AN, Song CS, Catal. Today, 111(1-2), 74, 2006
  22. Wang YH, Yang RT, Langmuir, 23(7), 3825, 2007
  23. Bhandari VM, Ko CH, Park JG, Han SS, Cho SH, Kim JN, Chem. Eng. Sci., 61(8), 2599, 2006
  24. Yin CY, Aroua MK, Daud WMAW, Colloid. Surf. A-Physicochem. Eng. Asp., 307, 128, 2007
  25. Xue M, Chitrakar R, Sakane K, Hirotsu T, Ooi K, Yoshimura Y, Feng Q, Sumida N, J. Colloid Interface Sci., 285(2), 487, 2005
  26. Kopac T, Kocabas S, Chem. Eng. Process., 41(3), 223, 2002
  27. Bagreev A, Rahman H, Bandosz TJ, Carbon, 39, 13196, 2001
  28. Tseng HH, Wey MY, Carbon, 42, 2269, 2004
  29. Lim JL, Okada M, Ultrason. Sonochem., 12, 277, 2005
  30. Alvarez PM, Beltran FJ, Gomez-Serrano V, Jaramillo J, Rodriguez EM, Water Res., 38, 2155, 2004
  31. Okoniewska E, Lach J, Kacprzak M, Neczaj E, Desalination, 223(1-3), 256, 2008
  32. Krishnan KA, Anirudhan TS, J. Hazard. Mater., 92(2), 161, 2002