Issue
Korean Journal of Chemical Engineering,
Vol.27, No.1, 37-44, 2010
Sensitivity of spinning process with flow-induced crystallization kinetics using frequency response method
The sensitivity of the low- and high-speed spinning processes incorporated with flow-induced crystallization has been investigated using frequency response method, based on process conditions employed in Lee et al. [1] and Shin et al. [2,3]. Crystallinity occurring in the spinline makes the spinning system less sensitive to any disturbances when it has not reached its maximum onto the spinline in comparison with the spinning case without crystallization. Whereas, the maximum crystallinity increases the system sensitivity to disturbances, interestingly exhibiting high amplitude value of the spinline area at the take-up in low frequency regime. It also turns out that neck-like deformation in the spinline under the high-speed spinning conditions plays a key role in determining the sensitivity of the spinning system.
[References]
  1. Lee JS, Shin DM, Jung HW, Hyun JC, J. Non-Newton. Fluid Mech., 130(2-3), 110, 2005
  2. Shin DM, Lee JS, Jung HW, Hyun JC, Korea-Aust. Rheol. J., 17(2), 63, 2005
  3. Shin DM, Lee JS, Jung HW, Hyun JC, Rheol. Acta, 45(5), 575, 2006
  4. Gelder D, Ind. Eng. Chem. Fundam., 10, 534, 1971
  5. Fisher RJ, Denn MM, AIChE J., 22, 236, 1976
  6. Denn MM, Modeling for Process Control in Advances in Control and Dynamic Systems, XV, Leondes CT, Ed., Academic Press, 1979
  7. Kase S, Araki M, J. Appl. Polym. Sci., 27, 4439, 1982
  8. Devereux BM, Denn MM, Ind. Eng. Chem. Fundam., 33, 2384, 1994
  9. Schultz WW, Zebib A, Davis SH, Lee Y, J. Fluid Mech., 149, 455, 1984
  10. Doufas AK, McHugh AJ, Miller C, Immaneni A, J. Non-Newton. Fluid Mech., 92(1), 81, 2000
  11. Doufas AK, McHugh AJ, Miller C, J. Non-Newton. Fluid Mech., 92(1), 27, 2000
  12. Joo YL, Sun J, Smith MD, Armstrong RC, Brown RA, Ross RA, J. Non-Newton. Fluid Mech., 102(1), 37, 2002
  13. Jung HW, Song HS, Hyun JC, J. Non-Newton. Fluid Mech., 87(2-3), 165, 1999
  14. Jung HW, Hyun JC, Korean J. Chem. Eng., 16(3), 325, 1999
  15. Jung HW, Song HS, Hyun JC, AIChE J., 46(10), 2106, 2000
  16. Lee JS, Jung HW, Kim SH, Hyun JC, J. Non-Newton. Fluid Mech., 99(2-3), 159, 2001
  17. Jung HW, Lee JS, Hyun JC, Korea-Aust. Rheol. J., 14(2), 57, 2002
  18. Jung HW, Lee JS, Scriven LE, Hyun JC, Korean J. Chem. Eng., 21(1), 20, 2004
  19. Lee JS, Shin DM, Jung HW, Hyun JC, Jeong YU, J. Soc. Rheol. Japan, 33, 2125, 2005
  20. Yun JH, Shin DM, Lee JS, Jung HW, Hyun JC, J. Soc. Rheol. Japan, 36, 133, 2008
  21. Kohler WH, McHugh AJ, Chem. Eng. Sci., 62(10), 2690, 2007
  22. Kohler WH, McHugh AJ, Polym. Eng. Sci., 48(1), 88, 2008
  23. Ziabicki A, Fundamentals of fiber formation, John Wiley and Sons, 1976
  24. Ziabicki A, Kawai H, High-speed fiber spinning: Science and engineering aspect, John Wiley and Sons, 1985
  25. Phan-Thien N, Tanner RI, J. Non-Newtonian Fluid Mech., 2, 353, 1977
  26. Muslet IA, Kamal MR, J. Rheol., 48(3), 525, 2004
  27. Kolb R, Seifert S, Stribeck N, Zachmann HG, Polymer, 41(4), 1497, 2000
  28. Haberkorn H, Hahn K, Breuer H, Dorrer HD, Matthies P, J. Appl. Polym. Sci., 47, 1555, 1993
  29. Takarada W, Kazama K, Ito H, Kikutani T, Intern. Polym. Proc., 19, 380, 2004
  30. Friedly JC, Dynamic behavior of processes, Prentice-Hall, New Jersey, 1972
  31. Minoshima W, White JL, Spruiell JE, Polym. Eng. Sci., 20, 1166, 1980
  32. Zheng R, Kennedy PK, J. Rheol., 48(4), 823, 2004