Issue
Korean Journal of Chemical Engineering,
Vol.27, No.2, 658-665, 2010
Rheological property and curing behavior of poly(amide-co-imide)/multi-walled carbon nanotube composites
Poly(amide-co-imide) (PAI)/multi-walled carbon nanotube (MWCNTs) composites were prepared by using solution mixing with ultrasonication excitation in order to investigate effects of MWCNTs on rheological properties and thermal curing behavior. Steady shear viscosity of the composite showed bell shaped curves with three characteristic patterns: shear thickening, shear thinning, and Newtonian plateau behavior. Both storage modulus and complex viscosity were increased due to higher molecular interaction than that of the pure PAI resin. Especially, hydrogen peroxide treated MWCNT/PAI composites had the highest storage modulus and complex viscosity. Glass transition temperature of the PAI/MWCNT composite was increased with increasing MWCNT content and thermal curing time since the mobility of PAI molecules was reduced as more constraints were generated in PAI molecular chains. It was found that thermal curing conditions of PAI/MWCNT composites are determined by considering effects of weight fraction and surface modification of MWCNTs on internal structure and thermal properties.
[References]
  1. Margolis JM, Engineering plastics handbook, McGraw-Hill, New York, 2006
  2. Mehdipour-Ataei S, Hatami M, Eur. Polym. J., 41, 2010, 2005
  3. Robertson GP, Guiver MD, Yoshikawa M, Brownstein S, Polymer, 45(4), 1111, 2004
  4. Wang Y, Goh SH, Chung TS, Polymer, 48(10), 2901, 2007
  5. Liaw DJ, Chang FC, Liu JH, Wang KL, Faghihi K, Huang SH, Polym. Degrad. Stab., 92, 323, 2007
  6. Liu P, Eur. Polym. J., 41, 2693, 2005
  7. Sung YT, Han MS, Song KH, Jung JW, Lee HS, Kum CK, Joo J, Kim WN, Polymer, 47, 4434, 2007
  8. Datsyuk V, Landois P, Fitremann J, Peigney A, Galibert AM, Soula B, Flahaut E, J. Mater. Chem., 19, 2729, 2009
  9. Lee SH, Kim MW, Kim SH, Youn JR, Eur. Polym. J., 44, 1620, 2008
  10. Kim JA, Seong DG, Kang TJ, Youn JR, Carbon, 44, 1898, 2006
  11. Gao C, He H, Zhou L, Zheng X, Zhang Y, Chem. Mater., 21, 360, 2009
  12. Yang K, Gu M, Guo Y, Pan X, Mu G, Carbon, 47, 1723, 2009
  13. Lee SH, Cho E, Jeon SH, Youn JR, Carbon, 45, 2810, 2007
  14. Kang M, Korean J. Chem. Eng., 25(4), 933, 2008
  15. Yang CP, Chen RS, Wei CS, Eur. Polym. J., 38, 1721, 2002
  16. Behniafar H, Haghighat S, Eur. Polym. J., 42, 3236, 2006
  17. Ranade A, D'Souza NA, Gnade B, Polymer, 43(13), 3759, 2002
  18. Shi L, Zhao Y, Zhang X, Su H, Tan T, Korean J. Chem. Eng., 25, 1434, 2009
  19. Buch PR, Mohan DJ, Reddy AVR, Polym. Int., 55, 391, 2006
  20. Ratna D, Abraham T, Karger-Kocsis J, Macromol. Chem. Phys., 209, 723, 2008
  21. Abraham TN, Ratna D, Siengchin S, Karger-Kocsis J, J. Appl. Polym. Sci., 110(4), 2094, 2008
  22. Vail JR, Burris DL, Sawyer WG, Wear, 267, 619, 2009
  23. Solvay Advanced Polymers Data Sheet. http://www.solvayadvancedpolymers.com
  24. Carbon nano-material technology data sheet. http://www.carbonnano.co.kr/english/english.htm.
  25. Larson RG, The structure and rheology of complex fluids, Oxford University Press, New York, 1999
  26. Dealy JM, Wissbrun KF, Melt rheology and its role in plastics processing, Van Nostrand Reinhold, New York, 1990
  27. Lee SH, Kim JH, Choi SH, Kim SY, Kim KW, Youn JR, Polym. Int., 58, 354, 2009
  28. Peng N, Chung TS, Lai JY, J. Membr. Sci., 326(2), 608, 2009
  29. Holmes CB, Cates ME, Fuchs M, Sollich P, J. Rheol., 49(1), 237, 2005
  30. Shenoy AV, Rheology of filled polymer systems, Kluwer Academic Publisher, Dordrecht, 1999
  31. Gupta RK, Polymer and composite rheology, Marcel Dekker, New York, 2000
  32. Brown E, Jaeger HM, Phys. Rev. Lett., 103, 086001, 2009
  33. Olejnik R, Liu P, Slobodian P, Zatloukal M, Saha P, AIP Conf. Proc., 1152, 204, 2009
  34. Salem DR, Structure formation in polymeric fibers, Hanser Publishers, Munich, 2001
  35. Morgan PW, Macromolecules, 10, 1381, 1977
  36. Choe EW, Kim SN, Macromolecules, 14, 920, 1981
  37. Cha SI, Kim KT, Lee KH, Mo CB, Jeong YJ, Hong SH, Carbon, 46, 482, 2008
  38. Xiao KQ, Zhang LC, Zarudi I, Compos. Sci. Technol., 67, 177, 2007
  39. Potschke P, Fornes TD, Paul DR, Polymer, 43(11), 3247, 2002
  40. Chen L, Pang XJ, Yu ZL, Mater. Sci. Eng., 457, 287, 2007
  41. Seyhan AT, Gojny FH, Tanoglu M, Schulte K, Eur. Polym. J., 43, 2836, 2007
  42. Fan ZH, Advani SG, J. Rheol., 51(4), 585, 2007
  43. Lee SH, Cho E, Youn JR, J. Appl. Polym. Sci., 103(6), 3506, 2007
  44. Yang H, Li B, Wang K, Sun T, Wang X, Zhang Q, Fu Q, Dong X, Han CC, Eur. Polym. J., 44, 113, 2008
  45. Lee SH, Park JS, Lim BK, Kim SO, J. Appl. Polym. Sci., 110(4), 2345, 2008
  46. Hatakeyama T, Quinn FX, Thermal analysis: Fundamentals and applications to polymer science, John Wiley & Sons, New York, 1999
  47. Ghosh MK, Mittal KL, Polyimide: Fundamentals and applications, Marcel Dekker, New York, 1996
  48. Chan KC, Chang TC, Polym. J., 30, 897, 1998
  49. Cai H, Yan F, Xue Q, Mater. Sci. Eng. A, 364, 94, 2004
  50. Menard KP, Dynamic mechanical analysis: A practical introduction, CRC Press, Boca Raton, FL, 1999
  51. Kang KS, Lee SI, Lee TJ, Narayan R, Shin BY, Korean J. Chem. Eng., 25(3), 599, 2008
  52. Feng QP, Xie XM, Liu YT, Zhao W, Gao YF, J. Appl. Polym. Sci., 106(4), 2413, 2007
  53. Vigolo B, Mamane V, Valsaque F, Le TNH, Thabit J, Ghanbaja J, Aranda L, Fort Y, McRaea E, Carbon, 47, 411, 2009