Issue
Korean Journal of Chemical Engineering,
Vol.27, No.1, 187-192, 2010
Bio-hydrogen production from a marine brown algae and its bacterial diversity
The aim of this study was to determine how bio-hydrogen production was related to the composition of the bacterial community in a dark fermentation fed with marine brown algae (Laminaria japonica). The bacterial diversity was ascertained by 16S rDNA PCR-sequencing. A total of 444 mL of bio-hydrogen was produced from 10 g/L of dry algae in a 100 mL of culture fluid for 62 h. The pH varied from 8.74 to 7.05. Active bio-hydrogen production was observed from 24 to 48 h, and maximum bio-hydrogen production was 106 mL over 1 L gas. The bacterial community of the activated sludge consisted of 6 phyla, where H2 producing and consuming bacteria coexisted. The only detectable bacterial phylum after bio-hydrogen generation with heat-treated (65 ℃, 20 min) seeding was Firmicutes. Clostridium and Bacillus species constituted 54% and 46%, respectively, of the bacterial mixture and the most abundant species was Clostridium beijierinckii (34%). These results may provide a better understanding of how different biohydrogen communities affect hydrogen production and aid in the optimization of bio-hydrogen production.
[References]
  1. Veziroglu TN, Barbir F, Int. J. Hydrogen Energy, 17, 391, 1992
  2. Bicelli PL, Int. J. Hydrogen Energy, 11, 555, 1986
  3. Dasa D, Veziroglu N, Int. J. Hydrogen Energy, 33, 6046, 2008
  4. Christensen CH, Jørgensen B, Rass-Hansen J, Egeblad K, Madsen R, Klitgaard SK, Hansen SM, Hansen MR, Andersen HC, Riisager A, Angew. Chem. Int. Ed., 45, 4648, 2006
  5. Park BG, Korean J. Chem. Eng., 21(4), 782, 2004
  6. Hansen AC, Zhang Q, Lyne PWL, Bioresour. Technol., 96(3), 277, 2005
  7. Kalia VC, Purohit HJ, J. Ind. Microbiol. Biotechnol., 35, 403, 2008
  8. Rocha JS, Barbosa MJ, Wijffels RH, in Biohydrogen II-An approach to environmentally acceptable technology, Miyaki J, Matsunaga T, San Pietro A Eds., Pergamon Press, London, 2001
  9. Benemann R, in Biohydrogen, Zaborsky OR Ed., Plenum Press, New York, 1998
  10. Wang J, Wan W, Int. J. Hydrogen Energy, 34, 799, 2009
  11. Park JI, Lee J, Sim SJ, Lee JH, Biothchnol. Bioproc. Eng., in press, 2009
  12. Jensen A, Hydrobiologia, 260-261, 15, 1993
  13. Tseng CK, J. Appl. Phycol., 13, 375, 2001
  14. Klass DL, Chem. Tech., 3, 161, 1974
  15. Lay JJ, Biotechnol. Bioeng., 68(3), 269, 2000
  16. Lee DG, Lee JH, Kim SJ, World J. Microbiol. Biotechnol., 21, 155, 2005
  17. Wagner M, Amann R, Lemmer H, Schleifer KH, Appl. Environ. Microbiol., 59, 1520, 1993
  18. Park SJ, Yoon JC, Shin KS, Kim EH, Yim S, Cho YJ, Sung GM, Lee DG, Kim SB, Lee DU, Woo SH, Koopman B, J. Microbiol., 45, 113, 2007
  19. Cleseri LS, APHA, Standard methods for examination of water and wastewater, 18th ed., Environmental Federation, Washington DC, 1992
  20. Yang P, Zhang R, McGarvey JA, John R, Int. J. Hydrogen Energy, 32, 4761, 2007
  21. Nath K, Kumar A, Das D, Appl. Microbiol. Biotechnol., 68(4), 533, 2005
  22. Sivaramakrishna D, Sreekanth D, Himabindu V, Anjaneyulu Y, Renew. Energy, 34, 937, 2009
  23. Fang HHP, Liu H, Bioresour. Technol., 82(1), 87, 2002
  24. Ueno Y, Otsuka S, Morimoto M, J. Ferment. Bioeng., 82(2), 194, 1996
  25. Pelletier E, Kreimeyer A, Bocs S, Rouy Z, Gyapay G, Chouari R, Riviere D, Ganesan A, Daegelen P, Sghir A, Cohen GN, Medigue C, Weissenbach J, Le Paslier D, J. Bacteriol., 190, 2572, 2008
  26. Maymogatell X, Chien YT, Gossett JM, Zinder SH, Science, 276(5318), 1568, 1997
  27. Penner TJ, Siddique T, Foght JM, http://www.ncbi.nlm.nih.gov/nuccore/170180273, Unpublished.
  28. Sousa DZ, Alves JI, Alves MM, Smidt H, Stams AJ, Environ. Microbiol., 11, 68, 2009
  29. Kraemer JT, Bagley DM, Biotechnol. Lett., 29(5), 685, 2007
  30. Stackebrandt E, Rainey FA, in The clostridia: molecular biology and pathogenesis, Rood J Ed., Academic Press, San Diego, 1997
  31. Mitchell WJ, in Clostridia: biotechnology and medical applications, Bahl H, Durre P Eds., Wiley-VCH, Weinheim, 2001
  32. Taguchi F, Chang JD, Mizukami N, Saito-Taki T, Hasegawa K, Morimoto M, Can. J. Microbiol., 39, 726, 1993
  33. Zhanga H, Bruns MA, Logana BE, Water Res., 40, 728, 2006
  34. Chen WM, Tseng ZJ, Lee KS, Chang JS, Int. J. Hydrogen Energy, 30, 1063, 2005
  35. Singh A, Pandey KD, Dubey RS, Int. J. Hydrogen Energy, 24, 693, 1999
  36. McTavish H, J. Biochem., 123, 644, 1998
  37. Porwal S, Kumar T, Lal S, Rani A, Kumar S, Cheema S, Purohit HJ, Sharma R, Patel SKS, Kalia VC, Bioresour. Technol., 99, 5444, 2008
  38. Jeong TY, Cha GC, Yeom SH, Choi SS, J. Ind. Eng. Chem., 14(3), 333, 2008
  39. You Y, Ren N, Wang A, Ma F, Gao L, Peng Y, Lee D, Int. J. Hydrogen Energy, 33, 3295, 2008
  40. Oh YK, Seol EH, Lee EY, Park S, Int. J. Hydrogen Energy, 27, 1373, 2002
  41. Nandi R, Sengupta S, Crit. Rev. Microbiol., 24, 61, 1998