Issue
Korean Journal of Chemical Engineering,
Vol.26, No.5, 1383-1388, 2009
Sorption kinetics of carbon dioxide onto rubidium carbonate
Rubidium carbonate was used as an adsorbent to capture carbon dioxide from gaseous stream of carbon dioxide, nitrogen, and moisture in a fixed-bed to obtain the breakthrough data of CO2. Experiments were carried out at flow rates of carbon dioxide and nitrogen (5×10^(-6)-35×10^(-6) m3/min), moisture (0.5×10^(-6)-3.0×10^(-6) m3/h), amount of adsorbent (0.5×10^(-3)-1.8×10^(-3) kg), mole fraction of carbon dioxide (0.03-0.22), and different sorption temperatures (323-353 K) at atmospheric pressure. The deactivation model in the non-catalytic heterogeneous reaction systems was used to analyze the sorption kinetics among carbon dioxide, carbonate, and moisture, employing the experimental breakthrough data that fit the deactivation model better than the adsorption isotherm models in the literature.
[References]
  1. Aresta M, Carbon dioxide recovery and utilization, Kluwer Aca-demic Pub., Boston, 2003
  2. Bartoo RK, Chem. Eng. Prog., 80, 35, 1984
  3. Fuchs W, Syosett NT, US Patent 3,511,595, 1970
  4. Gidaspow D, Onischak M, US Patent 3,865,924, 1975
  5. Hirano S, Shigomoto N, Yamada S, Hayashi H, Bull. Chem. Soc. Jpn., 68, 1030, 1995
  6. Hayashi H, Taniuchi J, Furuyashiki N, Sugiyama S, Hirano S, Shigemoto N, Nonaka T, Ind. Eng. Chem. Res., 37(1), 185, 1998
  7. Shigemoto N, Yanagihara T, Sugiyama S, Hayashi H, J. Chem. Eng. Jpn., 38(9), 711, 2005
  8. Okunev AG, Sharnov VE, Aristov YI, Parmon VN, React. Kinet. Catal. Lett., 71, 355, 2004
  9. Ball MC, Strachan AN, Strachan RM, J. Chem. Faraday, Trans., 87, 1911, 1991
  10. Ball MC, Clarke RA, Strachan AN, J. Chem. Faraday, Trans., 87, 3683, 1991
  11. Ball MC, Snelling CM, Strachan AN, Strachan RM, J. Chem. Faraday, Trans., 88, 631, 1992
  12. Hoffman JS, Pennline HW, J. Energy & Environ. Res., 1, 90, 2001
  13. Green DA, Turk BS, Gupta RP, McMichael WJ, Harrison DP, Liang Y
  14. Doraiswamy LK, Sharma MM, Heterogeneous reactions, vol. 1, John Wiley & Sons, Inc., New York, 1984
  15. Ishida M, Wen CY, AIChE J., 14, 311, 1968
  16. Ramachandran PA, Kulkarni BD, Ind. Eng. Chem. Res. Process Des. Dev., 19, 717, 1980
  17. Evans JW, Song S, Ind. Eng. Chem. Process Des. Dev., 13, 146, 1974
  18. Sampath BS, Ramachandran PA, Hughes R, Chem. Eng. Sci., 30, 135, 1975
  19. Ranade MG, Evans JW, Ind. Eng. Chem. Process Des. Dev., 19, 118, 1980
  20. Ruthven DW, Principles of adsorption and adsorption processes, John & Wiley, New York, 1984
  21. Suzuki M, Adsorption engineering, Kodansga Ltd., Tokyo, 1990
  22. Orbey N, Dogu G, Dogu T, Can. J. Chem. Eng., 60, 314, 1982
  23. Yasyerli N, Dogu T, Dogu G, Ar I, Chem. Eng. Sci., 51(11), 2523, 1996
  24. Kopac T, Kocabas S, Chem. Eng. Commun., 190(5-8), 1041, 2003
  25. Suyadal Y, Erol M, Oguz M, Ind. Eng. Chem. Res., 39, 7249, 2000
  26. Park SW, Sung DH, Choi BS, Oh KJ, Moon KH, Sep. Sci. Technol., 41(12), 2665, 2006
  27. Park SW, Sung DH, Choi BS, Lee JW, Kumazawa H, J. Ind. Eng. Chem., 12(4), 522, 2006
  28. Park SW, Choi BS, Lee JW, Sep. Sci. Technol., 42(10), 2221, 2007
  29. Dogu T, AIChE J., 32, 849, 1986