Issue
Korean Journal of Chemical Engineering,
Vol.26, No.5, 1296-1300, 2009
Photocatalytic reduction of hexavalent chromium (Cr(VI)) using rotating TiO2 mesh
An immobilized TiO2 electrode for photocatalytic hydrogen production is applied to reduce toxic Cr(VI) to non toxic Cr(III) in aqueous solution under UV irradiation. To overcome the limitation of powder TiO2, a novel technique of immobilization based on anodization was applied and investigated under various experimental conditions. The anodization was performed with three different electrolytes (single or mixed), and then the anodized samples were annealed under an oxygen stream. Among the three kinds of anodized/annealed TiO2 on Ti foil, Sample II (anodized at 20 V in 0.5% HF for 45 min at 5 ℃, and annealed at 450 ℃ for 5 hr in ambient oxygen at a flow rate of 400 mL/min) was more effective for both Cr(VI) reduction than the other samples. Based on the electrolyte compositions, nanotubular TiO2 grown on Ti meshes was fabricated for the purpose of its light-harvesting ability and efficiency, where the anodized/annealed TiO2 on meshes were rotated in the center of the reactor and Cr(VI) could be effectively reduced at rotation speeds ranging from 0 to 64 rpm. In case of Sample II, it was found that up to 98 % of the Cr(VI) was reduced in 30 min at 64 rpm.
[References]
  1. Ashokkumar M, Int. J. Hydrog. Energy, 23(6), 427, 1998
  2. Chen D, Ray AK, Chem. Eng. Sci., 56(4), 1561, 2001
  3. Yang H, Lin WY, Rajeshwar K, J. Photochem. Photobiol. A., 123, 137, 1999
  4. Lee H, Choi W, Environ. Sci. Technol., 36, 3872, 2002
  5. Ku Y, Jung IL, Wat. Res., 35, 135, 2001
  6. Testa JJ, Grela MA, Litter MI, Langmuir, 17(12), 3515, 2001
  7. Rengaraj S, Venkataraj S, Yeon JW, Kim Y, Li XZ, Pang GKH, Appl. Catal. B: Environ., 77(1-2), 157, 2007
  8. Xu XR, Li HB, Gu JD, Chemosphere, 63, 254, 2006
  9. Mohapatra P, Samantray SK, Parida K, J. Photochem. Photobiol. A., 170, 189, 2005
  10. Khalil LB, Mourad WE, Rophael MW, Appl. Catal. B: Environ., 17(3), 267, 1998
  11. Wang S, Wang Z, Zhuang Q, Appl. Catal. B., 1, 257, 1992
  12. Costa M, Toxicol. Appl. Pharmacol., 188, 1, 2003
  13. Yoon J, Amy G, Yoon Y, Wat. Sci. Technol., 51, 327, 2005
  14. Lawniczak S, Lecomte P, Ehrhardt J, Environ. Sci. Technol., 35, 1350, 2001
  15. Schlautman MA, Han I, Wat. Res., 35, 1534, 2001
  16. Yoon J, Shim R, Bae S, Joo H, J. Hazard. Mater., in press, 2008
  17. Osokov V, Kebbekus B, Chesbro D, Anal. Lett., 29, 1829, 1996
  18. Wang XL, Pehkonen SO, Ray AK, Ind. Eng. Chem. Res., 43(7), 1665, 2004
  19. Mor GK, Shankar K, Paulose M, Varghese OK, Grimes CA, Nano Lett., 5, 191, 2005
  20. Mor GK, Shankar K, Paulose M, Varghese OK, Grimes CA, Sol. Enrg. Materls. & Sol. Cells, 90, 2011, 2006
  21. Bae S, Shim E, Yoon J, Joo H, Sol. Enrg. Materls. & Sol. Cells, 92, 402, 2008
  22. Bae S, Kang J, Shim E, Yoon J, Joo H, J. Power Source, 179, 863, 2008
  23. Bae S, Shim E, Yoon J, Joo H, J. Power Source, 185, 439, 2008
  24. Gong D, Grimes CA, Varghese OK, Hu W, Singh RS, Chen Z, Dickey EC, J. Mater. Res., 16, 3331, 2001
  25. Paulose M, Mor GK, Varghese OK, Shankar K, Grimes CA, J. Photochem. Photobiol. A: Chem., 178, 8, 2006
  26. Jessen H, Joensen KD, Jorgensen JE, Pedersen JS, Sogaard EG, J. Nanoparticle Res., 6, 519, 2004
  27. Negishi N, Takeuchi K, Ibusuki T, Datye AK, J. Mater. Sci. Lett., 18(7), 515, 1999