Issue
Korean Journal of Chemical Engineering,
Vol.26, No.5, 1291-1295, 2009
The effect of metal ions in MNaY-zeolites for the adsorptive removal of tetrahydrothiophene
The adsorptive removal of tetrahydrothiophene (THT) was carried out over transition metal ion-exchanged Na-Y zeolites. CuNa-Y, CoNa-Y, NiNa-Y and FeNa-Y were prepared by a conventional ion exchange method from Na-Y using the nitrate solutions of corresponding metals. N2 physisorption, inductively coupled plasma-atomic emission spectroscopy (ICP-AES) and X-ray diffraction were conducted to characterize adsorbents. The temperature programmed desorption (TPD) of THT was also perfomed to probe the interaction between the adsorbent and the THT. The crystal structure of Y-zeolite was completely destroyed in FeNa-Y, which resulted in a insignificant amount of adsorbed THT. The breakthrough capacity, which is defined as the amount of sulfur adsorbed on the adsorbent before detecting sulfur species by PFPD, decreased in the following order CuNa-Y>CoNa-Y>NiNa-Y>>FeNa-Y. For interaction between THT and adsorbent, a TPD peak appeared over CoNa-Y at the highest temperature, which implies that the strongest interaction can be made between THT and Co^(2+) in CoNa-Y.
[References]
  1. Song CS, Catal. Today, 77(1-2), 17, 2002
  2. Ferrauto R, Hwang S, Shore L, Ruettinger W, Lampert J, Giroux T, Liu Y, Ilinich O, Annu. Rev. Mater. Res., 33, 1, 2003
  3. Yang RT, Hernandez-Maldonado AJ, Yang FH, Science, 301, 79, 2003
  4. Ma XL, Sun L, Song CS, Catal. Today, 77(1-2), 107, 2002
  5. Dicks AL, J. Power Sources, 61, 113, 1996
  6. de Wild PJ, Nyqvist RG, de Bruijn FA, Stobbe ER, J. Power Sources, 159(2), 995, 2006
  7. Haji S, Erkey C, Ind. Eng. Chem. Res., 42(26), 6933, 2003
  8. Jeevanandam P, Klabunde KJ, Tetzler SH, Micropor. Mesopor. Mater., 79, 101, 2005
  9. Bakr A, Salem SH, Ind. Eng. Chem. Res., 33(2), 336, 1994
  10. Salem ABSH, Hamid HS, Chem. Eng. Technol., 20(5), 342, 1997
  11. Bezverkhyy I, Bouguessa K, Geantet C, Vrinat M, Appl. Catal. B: Environ., 62(3-4), 299, 2006
  12. Garcia CL, Lercher JA, J. Phys. Chem., 95, 10729, 1991
  13. Roh HS, Jun KW, Kim JY, Kim JW, Park DR, Kim JD, Yang SS, J. Ind. Eng. Chem., 10(4), 511, 2004
  14. Song HI, Ko CH, Kim JC, Kim JN, Korean Chem. Eng. Res., 45(2), 143, 2007
  15. Oh SS, Kim GJ, J. Korean Ind. Eng. Chem., 18(5), 459, 2007
  16. Ng FTT, Rahman A, Ohasi T, Jiang M, Appl. Catal. B: Environ., 56(1-2), 127, 2005
  17. Hernandez-Maldonado AJ, Yang RT, AIChE J., 50(4), 791, 2004
  18. Velu S, Ma XL, Song CS, Ind. Eng. Chem. Res., 42(21), 5293, 2003
  19. Xue M, Chitrakar R, Sakane K, Hirotsu T, Ooi K, Yoshimura Y, Feng Q, Sumida N, J. Colloid Interface Sci., 285(2), 487, 2005
  20. Shimizu K, Kobayashi N, Satsuma A, Kojima T, Satokawa S, J. Phys. Chem. B, 110(45), 22570, 2006
  21. Satokawa S, Kobayashi Y, Fujiki H, Appl. Catal. B: Environ., 56(1-2), 51, 2005
  22. Lee D, Ko EY, Lee HC, Kim S, Park ED, Appl. Catal. A: Gen., 334, 129, 2008
  23. Oh SS, Kim GJ, J. Korean Ind. Eng. Chem., 18(4), 337, 2007
  24. Kim HT, Jun KW, Potdar HS, Yoon YS, Kim MJ, Energy Fuels, 21(1), 327, 2007
  25. Kim HT, Jun KW, Kim SM, Potdar HS, Yoon YS, Energy Fuels, 20(5), 2170, 2006
  26. Tang K, Song LJ, Duan LH, Li XQ, Gui JZ, Sun ZL, Fuel Process. Technol., 89(1), 1, 2008
  27. Cui H, Turn SQ, Reese MA, Energy Fuels, 22, 2550, 2008
  28. Lee D, Kim J, Lee HC, Lee KH, Park ED, Woo HC, J. Phys. Chem. C, 112, 18955, 2008
  29. Park ED, Choi SH, Lee D, Lee HC, J. Nanosci. Nanotechnol., in press.
  30. Lippens BC, de Boer JH, J. Catal., 4, 319, 1965
  31. Takahashi A, Yang RT, Munson CL, Chinn D, Ind. Eng. Chem. Res., 40(18), 3979, 2001
  32. Keane MA, Microporous Mater., 3, 385, 1995
  33. Kim JS, Keane MA, J. Colloid Interface Sci., 232(1), 126, 2000
  34. Keane MA, Microporous Mater., 3, 93, 1994
  35. Kaushik VK, Ravindranathan M, Zeolites, 12, 415, 1992
  36. Kim JS, Zhang L, Keane MA, Sep. Sci. Technol., 36(7), 1509, 2001