Issue
Korean Journal of Chemical Engineering,
Vol.26, No.5, 1252-1258, 2009
Effect of CeO2-addition sequence on the performance of CeO2-modified Ni/Al2O3 catalyst in autothermal reforming of iso-octane
Two types of CeO2-modified Ni/Al2O3 catalysts were prepared by a consecutive impregnation method with different sequences in the impregnation of Ni and CeO2, and their performance in autothermal reforming (ATR) of isooctane was investigated. Catalysts prepared by adding CeO2 prior to the addition of Ni, Ni/CeO2-Al2O3, produced larger amounts of hydrogen than those obtained using catalysts prepared by adding the two components in an opposite sequence, Ni-CeO2/Al2O3. The results of H2 chemisorption and temperature-programmed reduction revealed that added CeO2 increased the dispersion of the Ni species on Al2O3 and suppressed the formation of NiAl2O4 in the catalyst such that large amounts of Ni species were present as NiO, the active species for the ATR. The elemental and thermogravimetric analyses of deactivated catalysts indicated that Ni/CeO2-Al2O3, which showed a longer lifetime than Ni-CeO2/Al2O3, contained lesser amounts and different types of coke on the surface.
[References]
  1. Kim DH, Kang JS, Lee YJ, Park NK, Kim YC, Hong SI, Moon DJ, Catal. Today, 136, 228, 2008
  2. Simeone M, Salemme L, Allouis C, Int. J. Hydrogen Energ., 33, 4798, 2008
  3. Hoang DL, Chan SH, Ding OL, J. Power Sources, 159(2), 1248, 2006
  4. Moon DJ, Catal. Surv. Asia, 12, 188, 2008
  5. Koo K, Yoon J, Lee C, Joo H, Korean J. Chem. Eng., 25(5), 1054, 2008
  6. Nam SW, Yoon SP, Ha HY, Hong SA, Maganyuk AP, Korean J. Chem. Eng., 17(3), 288, 2000
  7. Liu N, Yuan Z, Wang S, Zhang C, Wang S, Li D, Int. J. Hydrogen Energ., 33, 1643, 2008
  8. Koga H, Fukahori S, Kitaoka T, Tomoda A, Suzuki R, Wariishi H, Appl. Catal. A: Gen., 309(2), 263, 2006
  9. Srinivas D, Satyanarayana CVV, Potdar HS, Ratnasamy P, Appl. Catal. A: Gen., 246(2), 323, 2003
  10. Qi AD, Wang SD, Fu GZ, Wu DY, J. Power Sources, 162(2), 1254, 2006
  11. Pacheco M, Sira J, Kopasz J, Appl. Catal. A: Gen., 250(1), 161, 2003
  12. Ming QM, Healey T, Allen L, Irving P, Catal. Today, 77(1-2), 51, 2002
  13. Trimm DL, Catal. Today, 37(3), 233, 1997
  14. Qi CX, Amphlett JC, Peppley BA, J. Power Sources, 171(2), 842, 2007
  15. Vizcaion AJ, Arena P, Baronetti G, Carrero A, Calles JA, Laborde MA, Amadeo N, Int. J. Hydrogen Energ., 33, 3489, 2008
  16. Roh HS, Jun KW, Catal. Surv. Asia, 12, 239, 2008
  17. Borowiecki T, Golebiowski A, Stasinska B, Appl. Catal. A: Gen., 153(1-2), 141, 1997
  18. Jun KW, Roh HS, Chary K, Catal. Surv. Asia, 11, 97, 2007
  19. Wang SB, Lu GQ, Appl. Catal. B: Environ., 19(3-4), 267, 1998
  20. Feio LSF, Hori CE, Damyanova S, Noronha FB, Cassinelli WH, Marques CMP, Bueno JMC, Appl. Catal. A: Gen., 316(1), 107, 2007
  21. Cheng ZX, Wu QL, Li JL, Zhu QM, Catal. Today, 30(1-3), 147, 1996
  22. Vidal H, Bernal S, Baker RT, Cifredo GA, Finol D, Rodriguez-Izquierdo JM, Appl. Catal. A: Gen., 208(1-2), 111, 2001
  23. Zheng W, Zhang J, Ge Q, Xu H, Li W, Appl. Catal. B, 80, 98, 2008
  24. Jens R. Rostrup-Nielsen, Steam reforming catalysts, Danish Technical Press INC., Copenhagen, 1975
  25. Azad AM, Duran MJ, Appl. Catal. A: Gen., 330, 77, 2007
  26. Lee JH, Lee EG, Joo OS, Jung KD, Appl. Catal. A: Gen., 269(1-2), 1, 2004
  27. Srihiranpullop S, Praserthdam P, Catal. Today, 93, 723, 2004