Issue
Korean Journal of Chemical Engineering,
Vol.26, No.5, 1226-1234, 2009
Network numerical simulation of two-dimensional nonlinear micropolar hydrodynamics in a Darcian porous medium
The two-dimensional steady-state boundary layer flow of an incompressible micropolar fluid in a Darcian porous medium is studied theoretically and computationally. The governing parabolic partial differential equations are reduced to dimensionless form by using a set of transformations, under appropriate boundary conditions. A network simulation method (NSM) solution is presented. Translational velocities (U, V) are found to increase with a rise in Darcy number (Da) and to increase and decrease, respectively, with a rise in micropolar parameter (Er), i.e., Eringen number (ratio of micropolar vortex viscosity to Newtonian viscosity). Micro-rotation is increased with increasing Er and Da values. Translational velocity gradient, ∂U/∂Y and micro-rotation gradient, ∂Ω/∂Y both increase with Darcy number; however, they are both found to decrease with increasing micropolar parameter, Er. The present study finds applications in polymer flows in filtration systems, chemical engineering, biorheology of porous tissue and plastic sheet processing.
[References]
  1. Schowalter WR, Mechanics of non-newtonian fluids, Pergamon, New York, 1979
  2. Khan T, Park JK, Kwon JH, Korean J. Chem. Eng., 24(5), 816, 2007
  3. Kim YD, Klingenberg DJ, Korean J. Chem. Eng., 14(1), 30, 1997
  4. Kang SY, Sangani AA, Korean J. Chem. Eng., 19(3), 363, 2002
  5. Han MS, Jung HC, Park JH, Hyun JC, Kim WN, Korean J. Chem. Eng., 19(2), 337, 2002
  6. Amanifard N, Khodaparast Haghi A, Korean J. Chem. Eng., 25(2), 191, 2008
  7. Kim KH, Chung CH, Korean J. Chem. Eng., 18(6), 796, 2001
  8. Kim DS, Cho ES, Choi CK, Korean J. Chem. Eng., 11(3), 190, 1994
  9. Jeong GT, Lee GY, Cha JM, Park DH, Korean J. Chem. Eng., 25(1), 118, 2008
  10. Yim SS, Kwon YD, Kim HI, Korean J. Chem. Eng., 18(5), 741, 2001
  11. CHUN MS, PARK OO, KIM JK, Korean J. Chem. Eng., 7(2), 126, 1990
  12. Lee HJ, Suda H, Haraya K, Korean J. Chem. Eng., 22(5), 721, 2005
  13. Hwang IG, Choi CK, Korean J. Chem. Eng., 25(2), 199, 2008
  14. Savins JG, Ind. Eng. Chem., 61, 18, 1969
  15. Kozicki W, Encyclopedia of Fluid Mechanics, 6, 965, 1986
  16. Christopher RH, Middleman S, I & EC Fundamentals, 4, 422, 1965
  17. Kemblowski Z, Michniewicz M, Rheologica Acta., 18, 730, 1979
  18. Dharmadikhari RV, Kale DD, Chem. Eng. Sci., 40, 527, 1985
  19. Pascal H, Int. J. Eng. Sci., 21, 199, 1983
  20. Al-Farris T, Pinder KL, Canadian J. Chem. Eng., 65, 391, 1987
  21. Bhargava R, Takhar HS, Rawat S, Beg TA, Beg OA, Nonlinear Analysis: Modeling and Control J., 12, 317, 2007
  22. Yoon DY, Kim MC, Choi CK, Korean J. Chem. Eng., 20(1), 27, 2003
  23. Takhar HS, Bhargava R, Rawat S, Beg TA, Beg OA, Int. J. Appl. Mech. and Eng., 12, 215, 2007
  24. Beg OA, Takhar HS, Bharagava R, Rawat S, Prasad VR, Physica Scripta: Proc. Royal Swedish Academy of Sciences, 77, 1, 2008
  25. So JH, Oh WK, Yang SM, Korean J. Chem. Eng., 21(5), 921, 2004
  26. Lim YT, Park OO, Korean J. Chem. Eng., 18(1), 21, 2001
  27. Koo SK, Korean J. Chem. Eng., 23(2), 176, 2006
  28. Eringen AC, J. Mathematics and Mechanics, 16, 1, 1966
  29. Stokes VK, Theories of fluids with microstructure: An introduction, Springer, New York/Berlin, 1984
  30. Migun NP, J. Engineering Physics (USSR), 41, 832, 1981
  31. Peddieson J, McNitt PR, Boundary-layer theory for a micropolar fluid, recent advances in engineering science, Editor: Eringen AC, 5, 1, 405-426, Gordon and Breach, New York, 1968
  32. Gorla RSR, Int. J. Eng. Sci., 25, 759, 1987
  33. Soundalgekar VM, Takhar HS, Int. J. Eng. Sci., 21, 961, 1983
  34. Annapurna N, Ramaniah G, Japan J. Appl. Physics, 15, 2441, 1976
  35. Bernardy T, Vodohospod. Cas., 28, 319, 1980
  36. Beg OA, Bhargava R, Rawat S, Takhar HS, Beg TA, Nonlinear Analysis: Modeling and Control J., 12, 157, 2007
  37. Beg OA, Beg TA, Takhar HS, Bharagava R, Hung TK, Int. J. Fluid Mechanics Research, 34, 403, 2007
  38. Beg OA, Bhargava R, Rawat S, Halim K, Takhar HS, Meccanica, 43, 391, 2008
  39. Beg OA, Bhargava R, Rawat S, Kahya E, Emirates J. Eng. Res., 13, 51, 2008
  40. Eringen AC, Mechanics of Micromorphic Continua, Mechanics of Generalized Continua, Kroner E (Editor), Springer-Verlag, Berlin, 18-35, 1968
  41. Eringen AC, Int. J. Eng. Sci., 2, 205, 1964
  42. Nath G, Rheologica Acta, 14, 850, 1975
  43. Ahmadi G, Int. J. Eng. Sci., 14, 639, 1976
  44. Beg OA, Zueco J, Takhar HS, Beg TA, Nonlinear Analysis: Modelling and Control J., 13, 281, 2008
  45. Beg OA, Zueco J, Takhar HS, Int. Communications Heat Mass Transfer, 35, 810, 2008
  46. Beg OA, Takhar HS, Zueco J, Sajid A, Bhargava R, Acta Mechanica, 200, 129, 2008
  47. Beg OA, Zueco J, Takhar HS, Communications in Nonlinear Science Numerical Simulation, 14, 1082, 2009
  48. Beg OA, Zueco J, Beg TA, Takhar HS, Acta Mechanica, 202, 181, 2009
  49. Beg OA, Zueco J, Bhargava R, Takhar HS, Int. J. Thermal Sciences, 48, 913, 2009
  50. Zueco J, Beg OA, Beg TA, Takhar HS, J. Porous Media, 12, 519, 2008
  51. Zueco J, Beg OA, Takhar HS, Prasad VR, Applied Thermal Engineering, 29, 2808, 2009
  52. Pspice 6.0. Irvine, California 92718. Microsim Corporation, 20 Fairbanks, 1994
  53. Nagel LW, SPICE, Computer Program to Simulate Semiconductor Circuits, Memorandum UCB/ERL M520, University of California, Berkeley, USA, 1975
  54. Schlichting H, Boundary-layer theory, McGraw-Hill, New York, 6th edition, 1979
  55. Bear J, Dynamics of fluids in porous media, Dover, New York, 1988