Issue
Korean Journal of Chemical Engineering,
Vol.26, No.3, 806-811, 2009
Excess molar volumes and molar enthalpies in the binary mixtures of {x1CH3CHClCH2Cl+x2CH3(CH2)n-1OH} (n=1 to 4) at T=298.15K
The excess molar volumes V^(E)m and excess molar enthalpies H^(E)m at T=298.15 K and atmospheric pressure for the binary systems {x1CH3CHClCH2Cl+x2CH3(CH2)n-1OH} (n=1 to 4) have been determined from density measurements by using a digital vibrating-tube densimeter and an isothermal calorimeter with flow-mixing cell, respectively. The 1-alkanols are methanol, ethanol, 1-propanol and 1-butanol. The V^(E)m values of the binary mixtures increase with chain length of the 1-alkanols, resulting in entire negative V^(E)m values for methanol, ‘S-shaped’ for ethanol, being nega- tive at low and positive at high mole fraction of 1,2-dichloropropane, and entire positive V^(E)m values for both 1-propanol and 1-butanol. The H^(E)m values for all systems show an endothermic effect (positive values), which exhibits a regular increase in magnitude when the number of -CH2- group in 1-alkanols is progressively increased and maximum values of H^(E)m varying from 741 J·mol^(-1) (methanol) to 1,249 J·mol^(-1) (1-butanol) around x1=0.63-0.72. The experimental results of both H^(E)m and V^(E)m were fitted to Redlich-Kister equation to correlate the composition dependence. The experimental H^(E)m data were also used to test the suitability of the Wilson, NRTL, and UNIQUAC models. The correlation of excess enthalpy data in these binary systems using UNIQUAC model provides the most appropriate results except for the system containing methanol.
[References]
  1. Kim Y, Kim M, Korean Chem. Eng. Res., 42(4), 426, 2004
  2. Kim JW, Kim MG, Korean Chem. Eng. Res., 44, 44, 2006
  3. Sen D, Kim MG, Thermochim. Acta., 471, 20, 2008
  4. O’Neil MJ, Heckelman PE, Koch CB, Roman KJ (Eds.), Merck index, 14th ed., Merck Research Laboratories, NJ, 2006
  5. Santana P, Balseiro J, Salgado J, Jimenez E, Legido JL, Romani L, Andrade MIP, J. Chem. Thermodyn., 31(10), 1329, 1999
  6. Santana P, Balseiro J, Jimenez E, Franjo C, Legido JL, Romani L, Andrade MIP, J. Chem. Thermodyn., 31(4), 547, 1999
  7. Medina C, Fernandez J, Legido JL, Paz-Andrade MI, J. Chem. Eng. Data, 47, 411, 2002
  8. Lafuente C, Pardo J, Rodriguez V, Royo FM, Urieta JS, J. Chem. Eng. Data, 38, 554, 1993
  9. Morrison RT, Boyd RN, Organic chemistry, 6th ed., Prentice Hall, NJ, 1992
  10. Riddick JA, Bunger WB, Sakano TK (Eds.), Organic solvents, 4th ed., Wiley-Interscience, NY, 1986
  11. Redlich O, Kister AT, Ind. Eng. Chem., 40, 345, 1948
  12. Wilson GM, J. Am. Chem. Soc., 86, 127, 1964
  13. Renon H, Prausnitz JM, AIChE J., 14, 135, 1968
  14. Abrams DS, Prausnitz JM, AIChE J., 21, 116, 1975
  15. Daubert TE, Danner RP, Sibul HM, Stebbins CC, Physical and thermodynamic properties of pure chemicals: data compilation, part 2, Taylor and Francis, Washington, D.C., 1995
  16. Poling BE, Prausnitz JM, O’Connell JP, The properties of gases and liquids, 5th ed., McGraw-Hill, NY, 2001
  17. Kim MG, Park SJ, Hwang IC, Korean J. Chem. Eng., 25(5), 1160, 2008
  18. Tanaka R, D’Arcy PJ, Benson GC, Thermochim. Acta., 11, 163, 1975
  19. Chand A, Fenby DV, J. Chem. Thermodyn., 10, 997, 1978
  20. Costigan MJ, Hodges LJ, Marsh KN, Stokes RH, Tuxford CW, Aust. J. Chem., 33, 2103, 1980
  21. Kirkup L, Data analysis with excel, Cambridge University Press, Cambridge, 2002
  22. Ott JB, Sipowska JT, J. Chem. Eng. Data, 41(5), 987, 1996
  23. Amigo A, Legido JL, Bravo R, Paz-Andrade MI, J. Chem. Thermodyn., 21, 1207, 1989
  24. Amigo A, Legido JL, Bravo R, Paz-Andrade MI, J. Chem. Thermodyn., 22, 633, 1990
  25. Amigo A, Legido JL, Bravo R, Paz-Andrade MI, J. Chem. Thermodyn., 22, 1059, 1990
  26. Amigo A, Bravo R, Paz-Andrade MI, J. Chem. Thermodyn., 23, 679, 1991