Issue
Korean Journal of Chemical Engineering,
Vol.26, No.3, 775-782, 2009
Absorption of carbon dioxide into aqueous colloidal silica solution with different sizes of silica particles containing monoethanolamine
Carbon dioxide was absorbed into an aqueous nanometer-sized colloidal silica solution in a flat-stirred vessel at 25 ℃ and 101.3 kPa to measure the absorption rate of CO2. The concentrations of silica were in the range of 0-31 wt% and the sizes were 7, 60, and 111 nm. The solution contained monoethanolamine (MEA) of 0-2.0 kmol/m3. The volumetric liquid-side mass transfer coefficient (kLa) of CO2 was correlated with the empirical formula representing the rheological property of silica solution. The use of the aqueous colloidal silica solution resulted in a reduction of the absorption rate of CO2 compared with Newtonian liquid based on the same viscosity of the solution. The chemical absorption rate of CO2 was estimated by film theory using kLa and physicochemical properties of CO2 and MEA.
[References]
  1. Astarita G, Savage DW, Bisio A, Gas treatment with chemical solvents, John Wiley & Sons, New York, 1983
  2. Astarita G, Greco Jr. G, Nicodemo L, AIChE J., 15, 564, 1969
  3. Nakanoh M, Yoshida F, Ind. Eng. Chem. Process Des. Dev., 19, 190, 1980
  4. Yagi H, Yoshida F, Ind. Eng. Chem. Process Des. Dev., 14, 488, 1975
  5. Ranade VR, Ulbrecht JJ, AIChE J., 24, 796, 1978
  6. Kars RL, Best RJ, Chem. Eng. Sci., 17, 201, 1979
  7. Sada E, Kumazawa H, Lee CH, Chem.Eng. Sci., 39, 117, 1984
  8. Hikita H, Ishimi K, Ueda K, Koroyasu S, Ind. Eng. Chem. Process Des. Dev., 24, 261, 1985
  9. Quicker G, Alper E, Deckwer WD, AIChE J., 33, 871, 1987
  10. Mehra A, Chem. Eng. Sci., 45, 1525, 1990
  11. Tinge JT, Drinkenburg AA, Chem. Eng. Sci., 50(6), 937, 1995
  12. Mehra A, Chem. Eng. Sci., 51, 461, 1995
  13. Ozkan O, Calimli A, Berber R, Oguz H, Chem. Eng. Sci., 55, 2723, 2000
  14. Zhou M, Cai WF, Xu CJ, Korean J. Chem. Eng., 20(2), 347, 2003
  15. Keblinski P, Phillpot SR, Choi SUS, Eastman JA, Int. J. Heat Mass Transf., 45(4), 855, 2002
  16. Kim JK, Jung JY, Kang YT, Int. J. Refrigeration, 29, 22, 2006
  17. Park SW, Sohn IJ, Park DW, Oh KJ, Sep. Sci. Technol., 38(6), 1361, 2003
  18. Park SW, Sohn IJ, Sohn SG, Kumazawa H, Sep. Sci. Technol., 38(16), 3983, 2003
  19. Park SW, Choi BS, Lee BD, Lee JW, Sep. Sci. Technol., 40(4), 911, 2005
  20. Park SW, Choi BS, Lee JW, Korean J. Chem. Eng., 24(3), 431, 2007
  21. Park SW, Choi BS, Song KW, Oh KJ, Lee JW, Sep. Sci. Technol., 42, 3537, 2007
  22. Park SW, Lee JW, Choi BS, Lee JW, Sep. Sci. Technol., 41(8), 1661, 2006
  23. Hikita H, Asai S, Ikuno S, AIChE J., 25, 793, 1979
  24. Brinker CJ, Scherer GW, Sol-gel science, Academic Press, New York, 1990
  25. Kennard ML, Meisen A, J. Chem. Eng. Data, 29, 309, 1984
  26. Daraiswany LK, Sharma MM, Heterogeneous reaction: Analysis, example and reactor design, John Wiley & Sons, New York, 1984
  27. Hikita H, Asai S, Takatsuka T, Chem. Eng. J., 11, 131, 1976
  28. Danckwerts PV, Sharma MM, Chem. Eng., 44, 244, 1966
  29. Nijsing RATO, Hendriksz RH, Kramers H, Chem. Eng. Sci., 10, 88, 1959
  30. Metzner AB, Otter RE, AIChE J., 3, 3, 1957
  31. Sandall OC, Patel KG, Ind. Eng. Chem. Process Des. Dev., 9, 139, 1970
  32. Moo-Young M, Kawase Y, Can. J. Chem. Eng., 65, 113, 1987