Issue
Korean Journal of Chemical Engineering,
Vol.26, No.3, 719-723, 2009
Application of full permeate recycling to very high gravity ethanol fermentation from corn
A ceramic membrane with pore size of 0.2 μm was used to percolate grain stillage of very high gravity (VHG) ethanol fermentation from corn, and the micro-filtration permeate was completely recycled for the cooking step in the next fermentation process. The concentrations of solids, sugars, total nitrogen and Na+ in the grain stillage and permeate reached a relative steady state after two or three batches of filtration and recycling process. There are no negative effects of by-products on VHG ethanol fermentation, and the final ethanol yield was above 15% (v/v). The conditions of filtration were examined to determine the optimum conditions for the process and included an initial flux of clean water above 550 L·m^(-2)·h^(-1) (0.1 MPa), an operating differential pressure of 0.15 MPa, an operating temperature above 70 ℃, and a permeation flux greater than 136 L·m^(-2)·h^(-1). It could be concluded that full permeate recycling during ethanol production was an efficient process that resulted in less pollution and less energy consumption.
[References]
  1. Tao F, Miao JY, Shi GY, Zhang KC, Process Biochem., 40, 183, 2005
  2. Kim C, Ryu YW, Korean J. Chem. Eng., 10(4), 203, 1993
  3. Nakamura Y, Kobayashi F, Ohnaga M, Sawada T, Biotechnol. Bioeng., 53(1), 21, 1997
  4. Kannan TR, Sangiliyandi G, Gunasekaran P, Enzyme Microb. Technol., 22(3), 179, 1998
  5. Cha HJ, Kim KR, Hwang BH, Ahn DH, Yoo YJ, Korean J. Chem. Eng., 24(5), 812, 2007
  6. Abbi M, Kuhad RC, Singh A, Process Biochem., 31(6), 555, 1996
  7. Gee KB, Choi CY, Korean J. Chem. Eng., 1(1), 13, 1984
  8. Kesava SS, Panda T, Rakshit SK, Process Biochem., 31(5), 449, 1996
  9. Fujii N, Sakurai A, Onjoh K, Sakakibara M, Process Biochem., 34(2), 147, 1999
  10. Kargupta K, Datta S, Sanyal SK, Biochem. Eng. J., 1, 31, 1998
  11. Lee JW, Yoo YJ, Korean J. Chem. Eng., 11(2), 119, 1994
  12. Lee WG, Lee JS, Park BG, Kim MS, Park SC, Chang HN, Korean J. Chem. Eng., 13(5), 453, 1996
  13. Sheehan GJ, Greenfield PF, Water Res., 14, 257, 1980
  14. Hsiao TY, Glatz CE, Glatz BA, Biotechnol. Bioeng., 44(10), 1228, 1994
  15. Gibbons WR, Westby CA, Dobbs TL, Biotechnol. Bioeng., 26, 1098, 1984
  16. Bafrncova P, Smogrovicova D, Slavikova I, Patkova J, Domeny Z, Biotechnol. Lett., 21(4), 337, 1999
  17. Kim JS, Kim BG, Lee CH, Biotechnol. Lett., 21(5), 401, 1999
  18. Lapisova K, Vlcek R, Klozova J, Rychtera M, Melzoch K, 16th international congress of chemical and process engineering, Prague, 1243, 2004
  19. Lapisova K, Vlcek R, Klozova J, Rychtera M, Melzoch KT, Czech J. Food Sci., 24, 261, 2006
  20. Sondhi R, Bhave R, Jung G, Membr. Technol., 11, 5, 2003
  21. Miller GL, Anal. Chem., 31, 426, 1959
  22. Chang IS, Choo KH, Lee CH, Pek UH, Koh UC, Kim SW, Koh JH, J. Membr. Sci., 90(1-2), 131, 1994
  23. Kim JS, Kim BG, Lee CH, Kim SW, Jee HS, Koh JH, Fane AG, J. Clean Prod., 5, 263, 1997
  24. Shi GY, Zhang KC, Xu R, 3rd international conference of food science and technology, USA, 68, 1998
  25. Arpornwichanop A, Shomchoam N, Korean J. Chem. Eng., 24(1), 11, 2007