Issue
Korean Journal of Chemical Engineering,
Vol.26, No.2, 534-541, 2009
Application of gain scheduling for modeling the nonlinear dynamic characteristics of NOx emissions from utility boilers
A hierarchical gain scheduling (HGS) approach is proposed to model the nonlinear dynamics of NOx emissions of a utility boiler. At the lower level of HGS, a nonlinear static model is used to schedule the static parameters of local linear dynamic models (LDMs), such as static gains and static operating conditions. According to upper level scheduling variables, a multi-model method is used to calculate the predictive output based on lower-level LDMs. Both static and dynamic experiments are carried out at a 360MW pulverized coal-fired boiler. Based on these data, a nonlinear static model using artificial neural network (ANN) and a series of linear dynamic models are obtained. Then, the performance of the HGS model is compared to the common multi-model in predicting NOx emissions, and experimental results indicate that the proposed HGS model is much better than the multi-model in predicting NOx emissions in the dynamic process.
[References]
  1. Zhang Y, Ding Y, Wu Z, Kong L, Chou T, Korean J. Chem. Eng., 24(6), 1118, 2007
  2. Visona SP, Stanmore BR, Chem. Eng. Sci., 53(11), 2013, 1998
  3. Coimbra CFM, Azevedo JLT, Carvalho MG, Fuel, 73, 1128, 1994
  4. Zhou H, Cen KF, Fan JR, Energy, 29(1), 167, 2004
  5. Zhou H, Cen KF, Mao JB, Fuel, 80, 2163, 2001
  6. Christopher AJ, Roger L, Proceedings of int’l joint power generation conference, Baltimore (1998)
  7. Booth RC, Roland WB, Proceedings of dynamic modeling control applications for industry workshop, Vancouver (1998)
  8. Laungphairojana A, Boiler operation optimization for air pollution control, Vanderbilt Univ. Press (2003)
  9. Piche S, Sayyar-Rodsari B, Johnson D, Gerules M, Control Systems Magazine, 20, 53, 2000
  10. Rugh WJ, Shamma JS, Automatica, 36(10), 1401, 2000
  11. Astrom KJ, Wittenamrk B, Adaptive control, Beijing, Science Press (2003)
  12. Chen PC, Shamma JS, J. Process Control, 14(3), 263, 2004
  13. Huang ZY, Li DH, Jiang XZ, Sun LM, Proceedings of the CSEE, 23, 191, 2003
  14. Petridis V, Kehagias A, Automatica, 34(4), 469, 1998
  15. Chen LJ, Narendra KS, Automatica, 37(8), 1245, 2001
  16. Fu Y, Chai TY, Automatica, 43(6), 1101, 2007
  17. Rugh WJ, Shamma JS, Automatica, 36(10), 1401, 2000
  18. Costa EF, Oliveira VA, Automatica, 38(7), 1247, 2002
  19. Lawrence DA, Automatica, 37(7), 1041, 2001
  20. Doyle FJ, Kwatra HS, Schwaber JS, Chem. Eng. Sci., 53(15), 2675, 1998
  21. Al-Duwaish H, Naeem W, Proceedings of the 2001 IEEE international conference on control applications, Mexico City, 2001
  22. Johjns AT, Warne DF, Thermal power plant simulation and control, London, The Institution of Electrical Engineers, 2003
  23. Fang LL, Gao ZY, Proceedings of the CSEE, 23, 211, 2003
  24. Chung DH, Yang JB, Noh DS, Kim WB, Korean J. Chem. Eng., 16(4), 489, 1999
  25. Kalogirou SA, Prog. Energy Combust. Sci., 29, 515, 2003