Issue
Korean Journal of Chemical Engineering,
Vol.26, No.1, 269-276, 2009
Brownian diffusion effect on nanometer aerosol classification in electrical mobility spectrometer
A multi-channel differential mobility analyzer (MCDMA) or aerosol spectrometer is widely used for classifying and measuring nanometer aerosol particles in the size range from 1 nm to 1 μm because of its better time response than a typical differential mobility analyzer. In the present study, the effect of Brownian diffusion on electrical mobility classification and trajectory of nanometer aerosol particles in an electrical mobility spectrometer developed at Chiang Mai University has been analytically investigated. Th Brownian diffusion of particles inside the spectrometer increased with decreasing particle size and flow rates of aerosol and clean sheath air, and with increasing inner electrode voltage, and also decreased with decreasing operating pressure. The particle trajectories considering Brownian diffusion motion inside the spectrometer were found to be broader than those under no Brownian diffusion. Smaller particles were found to have higher degree of broadening of trajectory than the larger particles. Brownian diffusion effect was found to be significant for particles smaller than 10 nm.
[References]
  1. Intra P, Tippayawong N, Songklanakarin J. Sci. Technol., 30, 243, 2008
  2. Liu BYH, Pui DYH, J. Colloid Inter. Sci., 47, 155, 1974
  3. Knutson EO, Whitby KT, J. Aerosol Sci., 6, 443, 1975
  4. Intra P, Tippayawong N, Mj. Int. J. Sci. Tech., 1, 120, 2007
  5. Yunker EA, Terr. Magn. Atmos. Electr., 45, 127, 1940
  6. Tammet HF, Jakobson AF, Salm JJ, Acta Comm. Univ. Tartu, 320, 48, 1973
  7. Mirme A, Noppel M, Peil I, Salm J, Tamm E, Tammet H, In 11th Int. Conf. on Atmospheric Aerosols, Condensation and Ice Nuclei, Budapest, 2, 155 (1984)
  8. Matisen R, Miller F, Tammet H, Salm J, Acta Comm. Univ. Tartu, 947, 60, 1992
  9. Mirme A, Electric aerosol spectrometry, Ph.D. Thesis, University of Tartuensis, Tartu, Estonia (1994)
  10. Tammet H, Mirme A, Tamm E, Atmos. Res., 62, 315, 2002
  11. Graskow BR, Design and development of a fast aerosol size spectrometer, Ph.D. Thesis, University of Cambridge, UK (2001)
  12. Biskos G, Reavell K, Collings N, Aerosol Sci. Tech., 39, 527, 2005
  13. Intra P, Tippayawong N, Int. Conf. on Technology and Innovation for Sustainable Development, Khon Kaen, Thailand, 25-27 January (2006)
  14. Intra P, Tippayawong N, J. Aerosol Res., 21, 329, 2006
  15. Kim JH, Korean J. Chem. Eng., 25(2), 377, 2008
  16. Kousaka Y, Okuyama K, Adachi M, Mimura T, J. Chem. Eng. Japan, 19, 401, 1986
  17. Zeleny J, Phys. Rev., 34, 310, 1929
  18. Tammet H, The aspiration method for the determination of atmospheric ion-spectra, IPST for NSF, Jerusalem (1970)
  19. Stolzenburg M, An ultrafine aerosol size distribution measuring system, PhD Thesis, University of Minnesota (1988)
  20. Salm J, Aerosol Sci. Tech., 32, 602, 2000
  21. Hagwood C, Sivathanu Y, Mulholland G, Aerosol Sci. Tech., 30, 40, 1999
  22. Intra P, Tippayawong N, Chiang Mai Univ. J., 6, 313, 2007
  23. TAMMET H, J. Aerosol Sci., 26(3), 459, 1995
  24. Li Z, Wang H, Phys. Rev. E., 68, 061206, 2003
  25. Shandakov SD, Nasibulin AG, Kauppinen EI, J. Aerosol Sci., 36, 1125, 2005
  26. Seto T, Nakamoto T, Okuyama K, Adachi M, Kuga Y, Takeuchi K, J. Aerosol Sci., 28(2), 193, 1997
  27. Alonso M, Kousaka Y, J. Aerosol Sci., 27(8), 1201, 1996
  28. Alonso M, Kousaka Y, Hashimoto T, Hashimoto N, J. Aerosol Sci., 29(8), 985, 1998
  29. Hinds WC, Aerosol technology, John Wiley & Sons, New York (1999)