Issue
Korean Journal of Chemical Engineering,
Vol.26, No.1, 168-174, 2009
Equation of state for the systems containing aqueous salt: Prediction of high pressure vapor-liquid equilibrium
An equation of state (EOS), which is based upon contributions to the Helmholtz energy, is presented for systems containing aqueous electrolyte solutions at high pressure. The Peng-Robinson equation of state is used to provide the Helmholtz energy of a reference system. The electrolyte terms consist three terms containing a modified Debye-Huckel term for long-range electrostatic interactions, the Born energy contribution for electrostatic works and a Margules term for short-range electrostatic interactions between ions and solvents. The binary and ternary interaction parameters of the equation of state are obtained by experimental osmotic coefficient data. Systems that were studied here are (water+NaCl+SC-CO2), (water+NH4Cl+SC-CO2), (water+Na2SO4+SC-CO2) and (water+methanol+NaCl+SC-CO2). It is found that the proposed equation of state is able to accurately represent the experimental data over a wide range of pressure, temperature and salt concentration.
[References]
  1. Koschel D, Coxam JY, Rodier L, Majer V, Fluid Phase Equilib., 247(1-2), 107, 2006
  2. Prutton CF, Savage RL, J. Am. Chem. Soc., 67, 1550, 1945
  3. Sander B, Fredenslund A, Rasmussen P, Chemical Engineering Science, 41, 1171, 1986
  4. Mock B, Evans L, Chen CC, AIChE J., 32, 1655, 1986
  5. Macedo EA, Skovborg P, Rasmussen P, Chemical Engineering Science, 45, 875, 1990
  6. Kikic L, Fermeglia, Rasmussen MP, Chemical Engineering Science, 46, 2775, 1990
  7. Polka HM, Li JD, Gmehling J, Fluid Phase Equilib., 94, 115, 1994
  8. Clarke MA, Bishnoi PR, Fluid Phase Equilib., 220(1), 21, 2004
  9. Raatschen W, Harvey AH, Prausnitz JM, Fluid Phase Equilibria, 38, 19, 1987
  10. Harvey AH, Prausnitz JM, AIChE J., 35, 635, 1989
  11. Sieder G, Maurer G, Fluid Phase Equilib., 225(1-2), 85, 2004
  12. Liu WB, Li YG, Lu JF, Fluid Phase Equilibria, 158-160, 595 (1999)
  13. Zuo YX, Guo TM, Chem. Eng. Sci., 46, 3251, 1991
  14. Patel NC, Teja AA, Chem. Eng. Sci., 37, 463, 1982
  15. Lu GW, Li CX, Tian R, Wang ZH, Wang WC, Fluid Phase Equilib., 218(1), 77, 2004
  16. Collinet E, Gmehling J, Fluid Phase Equilib., 246(1-2), 111, 2006
  17. Furst W, Renon H, AIChE J., 39, 335, 1993
  18. Sun TF, Bullock KR, Teja AS, Fluid Phase Equilib., 219(2), 257, 2004
  19. Bermejo MD, Martin A, Florusse LJ, Peters CJ, Cocero MJ, Fluid Phase Equilib., 238(2), 220, 2005
  20. Evans K, Powell R, Geochimica et Cosmochimica Acta., 70, 5488, 2006
  21. Melhem GA, Saini R, Leibovici CF, Fluid Phase Equilibria, 47, 189, 1989
  22. Panagiotopoulos AZ, Reid DB, Fluid Phase Equilibria, 29, 525, 1986
  23. Gao GH, Shi HB, Yu YX, Fluid Phase Equilib., 256(1-2), 105, 2007
  24. Pitzer KS, J. Phys. Chem., 77, 268, 1973
  25. Prausnitz JM, Lichtenthaler RN, de Azevedo EG, Molecular thermodynamics of fluid phase equilibria, Third edition, Prentice-Hall, Inc. (1999)
  26. Deyhimi F, Ghalami-Choobar B, Fluid Phase Equilib., 246(1-2), 185, 2006
  27. El Guendouzi M, Mounir A, Dinane A, J. Chem. Thermodyn., 35(2), 209, 2003
  28. Nighswander JA, Karlogerakis N, Mehrotra AK, J. Chem. Eng. Data, 34, 356, 1989