Issue
Korean Journal of Chemical Engineering,
Vol.26, No.1, 79-85, 2009
Simultaneous biofiltration of H2S, NH3 and toluene using cork as a packing material
Simultaneous removal of ternary gases of NH3, H2S and toluene in a contaminated air stream was investigated over 185 days in a biofilter packed with cork as microbial support. Multi-microorganisms including Nitrosomonas and Nitrobactor for nitrogen removal, Thiobacillus thioparus (ATCC 23645) for H2S removal and Pseudomonas aeruginosa (ATCC 15692), Pseudomonas putida (ATCC 17484) and Pseudomonas putida (ATCC 23973) for toluene removal were used simultaneously. The empty bed residence time (EBRT) was 40-120 seconds and the inlet feed concentration was 50-180 ppmv for NH3, 30-160 ppmv for H2S and 40-130 ppmv for toluene, respectively. The observed removal efficiency was 45-100% for NH3, 96-100% for H2S, and 10-99% for toluene, respectively. Maximum elimination capacity was 5.5 g/m3/hr for NH3, >20.4 g/m3/hr for H2S and 4.5 g/m3/hr for toluene, respectively. During longterm operation, the removal efficiency of toluene gradually decreased, mainly due to depositions of elemental sulfur and ammonium sulfate on the cork surface. The results of microbial analysis showed that nearly the same population density was observed on the surfaces of cork chips collected at each sampling point. Kinetic model analyses showed that there were no particular evidences of interactions or inhibitions among the microorganisms.
[References]
  1. Devinny JS, Deshusses MA, Webster TS, Biofiltration for air pollution control, CRC Press, Boca Raton, FL, USA (1998)
  2. Moe WM, Irvine RL, J. Env. Eng., 126, 826, 2000
  3. Torkian A, Dehghanzadeh R, Hakimjavadi M, J. Chem. Technol. Biotechnol., 78(7), 795, 2003
  4. Kim JO, Environ. Eng. Res., 2, 9, 1997
  5. Abumaizar RJ, Kocher W, Smith EH, J. Hazard. Mater., 60, 111, 1998
  6. Moe WM, Irvine RL, Wat. Res., 35, 1407, 2001
  7. Moe WM, Irvine RL, Wat. Sci. Technol., 43, 35, 2001
  8. Amarsanaa A, Shin WS, Choi JH, Choi SJ, Env. Eng. Res., 11, 1, 2006
  9. Amarsanaa A, Shin WS, Choi JH, Choi SJ, J. Environ. Sci., 15, 513, 2006
  10. Delhomenie M, Bibeau L, Bredin N, Roy S, Broussau S, Brzezinski R, Kugelmass JL, Heitz M, Adv. Environ. Res., 6, 239, 2002
  11. Kinney KA, Wright W, Chang DP, Schroeder ED, Biodegradation of vapor phase contaminants, in Bioremediation: principles and practice, Sikdar SK, Irvine RL Eds., Technomic Press, Lancaster, PA, USA (1997)
  12. Ergas SJ, Schroeder ED, Chang DPY, Morton RL, Water Environ. Res., 67, 816, 1995
  13. Kim SH, Oh KJ, Moon JH, Kim D, J. Micorbiol. Biotechnol., 10, 419, 2000
  14. Chung Y, Huang C, Tseng C, Chemosphere, 43, 1043, 2001
  15. Kim HS, Kim YJ, Chung JS, Xie Q, J. Air Waste Manage. Assoc., 52, 1389, 2002
  16. Kim HS, Xie Q, Kim YJ, Chung JS, Environ. Technol., 23, 839, 2002
  17. Liu YH, Quan X, Sun YM, Chen JW, Xue DM, Chung JS, J. Hazard. Mater., 95(1-2), 199, 2002
  18. Acuna ME, Villanueva C, Cardenas B, Christen P, Revah S, Proc. Biochem., 38, 7, 2002
  19. Cox HHJ, Deshusses MA, Chem. Eng. J., 87(1), 101, 2002
  20. Malhautier L, Gracian C, Roux J, Fanlo J, Cloirec PL, Chemosphere, 50, 145, 2003
  21. Zilli M, Palazzi E, Sene L, Converti A, Borghi MD, Process Biochem., 37, 423, 2003
  22. Lim KH, Park SW, Korean J. Chem. Eng., 21(6), 1161, 2004
  23. Lim KH, Korean J. Chem. Eng., 22(2), 228, 2005
  24. Park SJ, Cho KS, Hirai M, Shoda M, J. Ferment. Bioeng., 76, 55, 1993
  25. Wani AH, Branion RMR, Lau AK, J. Hazard. Mater., 60, 287, 1998
  26. Chung Y, Huang C, Tseng C, Pan JR, Chemosphere, 41, 329, 2000
  27. Oyarzun P, Arancibia F, Canales C, Aroca GE, Process Biochem., 39, 165, 2003
  28. Shojaosadati SA, Elyasi S, Resour. Conserv. Recycl., 27, 139, 1999
  29. Busca G, Pistarino C, J. Loss Prevent Proc., 16, 157, 2003
  30. Korean Ministry of Environment, Permissible air pollutant emission standards, Korean Ministry of Environment Printing Office: Seoul, Republic of Korea (2005)
  31. Neal AB, Loehr RC, Waste Manage., 20, 59, 2000
  32. Cho KS, Ryu HW, Lee NY, J. Biosci. Bioeng., 90(1), 25, 2000
  33. Hirai M, Kamamoto M, Yani M, Shoda M, J. Biosci. Bioeng., 91(4), 396, 2001
  34. Elias A, Barona A, Arreguy A, Rios J, Aranguiz I, Penas J, Process. Biochem., 37, 813, 2002
  35. Shinabe K, Oketani S, Ochi T, Kanchanatawee S, Matsumura M, Biochem. Eng. J., 5, 209, 2002
  36. Yoon IK, Kim CN, Park CH, Korean J. Chem. Eng., 19(6), 954, 2002
  37. Delhomenie MC, Bibeau L, Gendron J, Brzezinski R, Heitz M, Chem. Eng. J., 94(3), 211, 2003
  38. Row R, Toff R, Waide J, Appl. Environ. Microbiol., 33, 675, 1977
  39. Schmidt WL, Belser LW, Autotrophic nitrifying bacteria, in Methods of Soil Analysis. Part 2. Microbiological and Biochemical Properties (Soil Science Society of America Book, No 5), Weaver RW, Angle S, Bottomley P, Bezdiecek D, Smith S, Tabatabai A, Wollum A, Mickelson SH, Bigham JM Eds., 2nd ed., Soil Science Society of America, Madison, WI, USA, pp. 159-197 (1994)
  40. Edwards VH, Biotechnol. Bioeng., 7, 679, 1970
  41. Zarook SM, Shaikh AA, Ansar Z, Baltzis BC, Chem. Eng. Sci., 52(21-22), 4135, 1997
  42. Shinabe K, Oketani S, Ochi T, Matsumura M, J. Ferment. Bioeng., 80(6), 592, 1995
  43. Cesario MT, Beverloo WA, Tramper J, Beeftink HH, Enzyme Microb. Technol., 21(8), 578, 1997
  44. Kang YT, Nagano T, Kashiwagi T, Int. J. Refrig., 25, 878, 2002
  45. Terasaka K, Oka J, Tsuge H, Chem. Eng. Sci., 57(18), 3757, 2002