Issue
Korean Journal of Chemical Engineering,
Vol.25, No.3, 493-500, 2008
Hydrodechlorination of 2,4,6-trichlorophenol for a permeable reactive barrier using zero-valent iron and catalyzed iron
Dehalogenation of toxic organic compounds has been intensively studied during the last decade by using zero-valent iron (ZVI). However, the reactivity of iron is compound specific and very low reactivities were reported for aromatic compounds including chlorophenols. In this study, hydrodechlorination of 2,4,6-trichlorophenol (2,4,6-TCP) was conducted in a batch system by using ZVI and catalyzed iron. No degradation was observed with ZVI over the 40 days experiments. Catalyzed ZVIs removed 2,4,6-TCP and palladium-coated iron (Pd/Fe) and nickel-coated iron (Ni/Fe) showed relatively enhanced reactivity while copper-coated iron (Cu/Fe) and platinum-coated iron (Pt/Fe) showed lower reactivities. The surface area normalized kinetic constants (kSA) of Pd/Fe, Ni/Fe, Cu/Fe, Pt/Fe are 2.54×10-4, 1.01×10-4, 2.24×10-5, 2.56×10-5 L m.2 h.1, respectively. The identification of less chlorinated phenols and phenol confirmed that the removal is dechlorination. Pd/Fe system exerts relatively low pH compared with the ZVI system, and the low pH is favorable for the dechlorination. The reactivity enhancement of catalyzed iron was discussed in terms of catalytic effects and the corrosion potential by the bimetal coupling. Variable Pd content on the Pd/Fe was tested, and the degradation rate of 2,4,6-TCP increased in proportion to the increase of Pd content.
[References]
  1. Cheng IF, Fernando Q, Korte N, Environ. Sci. Technol., 31, 1074, 1997
  2. Kim YH, Carraway ER, Environ. Sci. Technol., 34, 2014, 2000
  3. Li T, Farrell J, Environ. Sci. Technol., 34, 173, 2000
  4. Matheson LJ, Tratnyek PG, Environ. Sci. Technol., 28, 2045, 1994
  5. Muftikian R, Fernando Q, Korte N, Water Res., 29, 2434, 1995
  6. Orth WS, Gillham RW, Environ. Sci. Technol., 30, 66, 1996
  7. Roberts AL, Totten LA, Arnold WA, Burris DR, Campbell TJ, Environ. Sci. Technol., 30, 2654, 1996
  8. Siantar DP, Schreier CG, Chou CS, Reinhard M, Water Res., 30, 2315, 1996
  9. Song DI, Kim YH, Shin WS, Korean J. Chem. Eng., 22(1), 67, 2005
  10. Burris DR, Campbell TJ, Manoranjan VS, Environ. Sci. Technol., 29, 2850, 1995
  11. Ramamoorthy S, Ramamoorthy S, Chlorinated organic compounds in the environment, Lewis Publishers, New York, 1997
  12. Sawyer CN, McCarty PL, Parkin GF, Chemistry for environmental Chemistry for environmental, McGraw-Hill, Inc., New York, 1994
  13. Liu Y, Yang F, Chen J, Gao L, Chen G, Chemosphere, 50, 1275, 2003
  14. Liu Y, Yang F, Yue PL, Chen G, Water Res., 35, 1887, 2001
  15. Miyazaki A, Amano T, Hotaka SH, Nakano Y, Chemosphere, 47, 65, 2002
  16. Wegman RCC, Van den Broek HH, Water Res., 17, 227, 1983
  17. Paasivirta J, Sarkka J, Leskijarvi T, Roos A, Chemosphere, 9, 441, 1980
  18. WHO, Environmental health criteria 93, World Health Organization, 1989
  19. Keith LH, Telliard WA, Environ. Sci. Technol., 13, 416, 1979
  20. US EPA, http://www.scorecard.org, 2002
  21. US EPA, http://www.epa.gov/safewater, 2004
  22. Dries J, Bastiaens L, Springael D, Agathos SN, Diels L, Environ. Sci. Technol., 38, 2879, 2004
  23. Arnold WA, Roberts AL, Environ. Sci. Technol., 32, 3017, 1998
  24. O’Hannesin SF, Gillham RW, Ground Water, 36, 164, 1998
  25. Sayles GD, You G, Kupferle MJ, Environ. Sci. Technol., 31, 3448, 1997
  26. Warren KD, Arnold RG, Bishop TL, Lindholm LC, Betterton EA, J. Hazard. Mater., 41, 217, 1995
  27. Choi JH, Reductive dechlorination of chlorinated phenols using zero-valent metal and bimetal systems: Kinetics and sequential permeable reactive barrier, (Ph.D. Dissertation), Kyungpook National University, Korea, 2004
  28. Choi JH, Kim YH, Choi SJ, Chemosphere, 67, 1551, 2007
  29. Schreier CG, Reinhard M, Chemosphere, 29, 1743, 1994
  30. Chuang FW, Larson RA, Wessman MS, Environ. Sci. Technol., 29, 2460, 1995
  31. Choe S, Lee SH, Chang YY, Hwang KY, Khim J, Chemosphere, 42, 367, 2001
  32. Grittini C, Malcomson M, Fernando Q, Korte N, Environ. Sci. Technol., 29, 2898, 1995
  33. Wang CB, Zhang WX, Environ. Sci. Technol., 31, 2154, 1997
  34. Morales J, Hutcheson R, Cheng IF, J. Hazard. Mater., 90, 97, 2002
  35. Helland BR, Alvarez PJJ, Schnoor JL, J. Hazard. Mater., 41, 205, 1995
  36. Kim YH, Reductive dechlorination of chlorinated aliphatic and aromatic compounds using zero valent metals: Modified metals and electron mediators, (Ph. D. Dissertation), Texas A&M University, College Station, Texas, 1999
  37. Johnson TL, Fish W, Gorby YA, Tratnyek PG, J. Contamin. Hydrol., 29, 377, 1998
  38. Scherer MM, Balko BA, Tratnyek PG, ACS Symposium Series, 715, 301, 1998
  39. Allen-King RM, Halket RM, Burris DR, Environ. Toxicol. Chem., 16, 424, 1997
  40. Burris DR, Allen-King RM, Manoranjan VS, Campbell TJ, Loraine GA, Deng B, J. Environ. Eng., 124, 1012, 1998
  41. Campbell TJ, Burris DR, Roberts AL, Wells JR, Environ. Toxicol. Chem., 16, 625, 1997
  42. Hung HM, Hoffmann MR, Environ. Sci. Technol., 32, 3011, 1998
  43. Johnson TL, Scherer MM, Tratnyek PG, Environ. Sci. Technol., 30, 2634, 1996
  44. Scherer MM, Balko BA, Gallagher DA, Tratnyek PG, Environ. Sci. Technol., 32, 3026, 1998
  45. Su C, Puls RW, Environ. Sci. Technol., 33, 163, 1999
  46. Fennelly JP, Roberts AL, Environ. Sci. Technol., 32, 1980, 1998
  47. Schreier CG, Reinhard M, Chemosphere, 31, 3475, 1995
  48. Roy HM, Wai CM, Yuan T, Kim JK, Marshall WD, Appl. Catal. A: Gen., 271(1-2), 137, 2004
  49. Yuan G, Keane MA, Catal. Today, 88(1-2), 27, 2003
  50. Yuan G, Keane MA, Catal. Commun., 4, 195, 2003
  51. Shreir LL, Jarman RA, Burstein GT, Corrosion (Vol. 1): metal/environment reactions, Butterworth Heinemann, Oxford, 1994
  52. Hirai N, Takashima M, Tanaka T, Har S, Sci. Technol. Adv. Mater., 5, 181, 2004
  53. Kiraly Z, Mastalir A, Berger F, Dekany I, Langmuir, 13(3), 465, 1997
  54. Kim YH, Carraway ER, Environ. Technol., 24, 809, 2003
  55. Dean JA, Lange’s handbook of chemistry, (13th edition), McGraw-Hill, Inc., New York, 1985